

Theoretical and Physical Chemistry Institute National Hellenic Research Foundation

Vass. Constantinou 48, Athens

LECTURE

"Analysis of bonding patterns in molecular systems exhibiting partial biradical character"

Prof. Sotiris S. Xantheas

Advanced Computing, Mathematics & Data Division, Pacific Northwest National Laboratory, Richland, USA and Department of Chemistry, University of Washington, Seattle, USA

> Friday, October 6, 2017, 12:00 Seminar room, ground floor, NHRF

Analysis of bonding patterns in molecular systems exhibiting partial biradical character

Sotiris S. Xantheas

Advanced Computing, Mathematics & Data Division Pacific Northwest National Laboratory, PO Box 999, MS K1-83, Richland WA 99352 <u>sotiris.xantheas@pnnl.gov</u>

and

Department of Chemistry, University of Washington, Seattle, WA 98195 <u>xantheas@uw.edu</u>

A quantitative scale of the biradical charater ($0 \le \beta \le 1$) of a molecular system based on a Multi-Reference Configuration Interaction (MRCI) wavefunction is introduced and used to analyze its underlying electronic structure and bonding pattern. Triatomic ions in the FX_2^+ series, where X = O, S, Se, Te and Po are the terminal atoms, were found to exhibit unusually high biradical characters ($0.76 < \beta < 0.92$), the largest among the homologous, 18 valence electron molecules CX_2^{2-} , NX_2^{-} , X_3 and OX_2 (X = O, S, Se, Te and Po). The concept of biradical character was further used to investigate the bonding mechanism in ozone (O_3) and its sulfur-substituted analogues, SO₂, OS₂, and S₃. We demonstrate that the binding in these molecules can be described by a mixture of a closed shell structure with one and a half bond between the central and terminal atoms and an open-shell structure with a single bond and two lone electrons on each terminal atom. The analysis of the MRCI wavefunctions provides a simple measure of the relative mixture of the two bonding scenarios, yielding a biradical character of 3.5% for OSO, 4.4% for SSO, 11% for S_3 , 18% for O_3 , 26% for SOO, and 35% for SOS. Our analysis further offers an explanation for the different O-O, S-O and S-S bond lengths and singlet-triplet splittings of these species, the stabilization of OSO and SSO over the SOO and SOS isomers as well as the (X-YZ) relative binding energies (X=S, O), all based on their different biradical character.