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Chapter 1

Protein structure

1.1 Introduction: the primary structure

This very brief description of protein structure will necessarily be somewhat
idiosyncratic (a theoretical physicist’s view).

Proteins are aperiodic biological macromolecules. Their level of structural
complexity is not necessarily higher than that of a polymer. There is no branch-
ing, no polydispersity. Composition is exact.

Fundamental property of a protein: the ability to assume a soluble, compact
state in water. This is accomplished by a hierarchy of interactions and struc-
tures whose net effect is to stabilize - among an astronomic number of possible
altenatives - the native conformation. The relationship between 3-dimensional
structure and function (ubiquitous in biochemistry) is defined in terms of the
native conformation.

In terms of their function (or 3d structure) proteins are divided in three
broad classes:

• fibrous (structural) proteins

• membrane proteins

• globular (enzyme) proteins.

Proteins are made of 20 amino acids (fundamental building blocks, Fig.)
Notation / Terminology (neutral amino-acid):

• Cα : α−carbon, tetrahedrally coordinated

• NH2: amino group

• R-group: side chain, different in each amino-acid

• COOH: Carboxyle

Chiral asymmetry : if R 6= H chiral asymmetry leads to distinct steroisomers
(known as D- and L-type respectively).

Amino acid classification scheme (according to R-group):
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Figure 1.1: Formation of the peptide bond

1. nonpolar, aliphatic: hydrophobic: (from Greek φoβoς = fear) [6/20].

2. polar, uncharged: hydrophilic: (from Greek φιλoς = friend) [6/20].

3. aromatic: relatively nonpolar, hydrophobic [3/20]

4. + charged (at pH 7.0) [3/20]

5. - charged (at pH 7.0) [2/20]

Building blocks put together (Fig. 1.1)
Peptide bond formation: ∆G = 21 kJ/mole = 5 kcal/mole ≈ 2500K, weak by

covalent standards (200− 400 kJ/mole), very strong by thermal standards.

More terminology:

• peptides: small number of amino acids linked together, usually with a
defined sequence

• polypeptides : longer chains, but - sequence or length not strictly defined;
prepared by polymerization of one or few amino acids into random se-
quences of varying lengths

• proteins: chains with a specific sequence, length and folded conformation

First level of structural organization (primary structure) ⇔ sequence of amino
acids)

Agent (responsible interaction): covalent bonding
at this level, the protein is simply an aperiodic 1-d chain.
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Figure 1.2: The planar peptide group

Number of possible sequences? For a small (N = 100) protein there are
10020 ≈ 1040 ”possible” sequences.

Actual number of natural proteins O(104 − 105).

1.2 Secondary structure

X-ray expts (Astbury, 1930’s) with α-keratin (fibrous protein, hair, wool)
findings: regular structure with a repeating unit of 5.4A. interpretation: (Paul-
ing & Grey, 1951)
C − N bond length 1.32A between that of single C − N (1.45A) and double
C = N (1.22A) bond lengths. ”Partly double-bond character” As a result:
The peptide unit is planar and rigid.(Fig. 1.2)

(NB: including the neighboring Cα atoms; note that the sum of angles at
both C and N equals 360 degrees.)
Rotations are possible

• around the Cα − C bond axis (ψ angle)

• around the N − Cα bond axis (φ angle)

Set of {φi, ψi} angles defines local structure (orientation of successive planar
units).
Convention: φ = 0 = ψ if peptide bonds before and after a given Cα are
coplanar.

α−helical structure proposed by Pauling, has following properties:
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Figure 1.3: The α−helix in various levels of schematization. (a) shows explic-
itlly the planar peptide units; (b) emphasizes the hydrogen bonding between N
and C=O groups which are 4 residues apart in the chain; (c) shows only the
backbone.
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• φ = −57o, ψ = −47o

• distance between monomers p = 1.5A (projected along the helical axis)

• repeat distance P = 5.4A

• rotation angle between successive Cα atoms: 100 o.

• P/p = 3.6 residues per turn of the helix

• exact repeat unit: 3.6× 5 = 18 monomers - but

• structure is held together by hydrogen bonds connecting the N atom of
the i−th unit to the O of the i+4−th unit, which is approximately above
it (cf Fig)

Typical strength of H-bonds? Numbers in the literature vary from 3−6kcal/mole
This is probably too high for the α−helix (same magnitude as the peptide bond!)
but even 1 kcal/mole should be enough to stabilize the helix. (NB: other factors
may also be important in solution)

Note: what has been described is the right-handed α−helix. A left-handed
helix is in principle sterically possible. However, the side chains would come into
close contact with the backbone; therefore the left-handed helix is not favored
energetically.

Another common structure found in fibrous protein is the β−sheet. It also
exploits hydrogen bonding for its stabilization. Dihedral angles and distances
are shown in the following Table: (NB: there are other, less common, secondary
structures, e.g. triple helix (collagen)).

structure φ(o) ψ(o) residues per turn Travel per residue (A)
r-h α−helix -57 -47 3.6 1.5
β−parallel -119 113 2 3.2

β−antiparallel -139 135 2 3.4

The polypeptide chain is almost fully extended.
β−antiparallel (also in early measurements of Astbury on wool, stretched

and heated)
α−helix and β−sheets are structural elements common to ”structural” pro-

teins (collagen, α−keratin etc.)
Systematics of dihedral angles (useful even if the overall structure is more

complex, because it helps identify local structural motifs)

• Ramachandran plots : The method utilizes a hard sphere potential with
appropriate atomic radii (can be refined to use more realistic potentials)
to study what structures are sterically possible for each amino acid. The
result is a ”Ramachandran plot” (Fig. 1.4). It demonstrates quite nicely
that α−helixes and β−sheets fall inside the ”allowed” region.
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Figure 1.4: A Ramachandran plot, showing sterically allowed values of dihedral
angles. Common secondary structures all fall inside allowed regions.
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Figure 1.5: Statistics of dihedral angles (2500 residues 13 natural proteins,
Levitt 1976)

• statistical approach: look at the dihedral angles of 2500 residues in 13
different proteins (Levitt, J. Mol. Biol. 1976) - Fig. 1.5 observe the con-
centration around both α−helix and β−sheet characteristic values. There
is significant dispersion. But the point is that such structures account
for most of the local arrangement even if the exact 3-d structure is quite
different in typical globular proteins.

NB: In these lectures I have made no mention of (at least) two important in-
teractions which presumably co-determine protein structure: electrostatic and
van der Waals interactions. Any complete account of protein energetics must
include them!

1.3 The tertiary structure of globular proteins;
folding

Key experiments: Kendrew, Perutz ca 1950
X-ray diffraction, structure of myoglobin, hemoglobin,

local structure of myoglobin (153 residues) is 78% α-helical
Compact.
functional site: heme group

complex organic ring structure (photoporphyrine), to which a
Fe++ ion is bound. The ion has 6 coordination bonds, 4 in the plane of the flat
porphyrine molecule and 2 perpendicular to it; one of the latter binds to a N
atom, the other serves as a binding site for an O2 molecule.

Storage of oxygen by muscle myoglobin allows whales, seals etc. to remain
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Figure 1.6: The structure of myoglobin

submerged for long periods.
The heme group must be protected from solvent, because in an oxygenated

solution the ferrous Fe++ ion would be transformed to ferric Fe+++, which
does not bind O2.

Denaturation occurs due to heat or extremes of pH.
It consists of loss of 3-d structure and function. (e.g. egg boiling: albumin a
soluble egg protein coagulates to a white solid on heating - irreversible!)
It does not disrupt 1-d sequence.
Process not always irreversible.
(Option: Anfinsen expt.)
What does it disrupt? Conversely: what holds 3-d protein conformations to-
gether?
Globular proteins in solution must protect hydrophobic residues from coming
into contact with water.
Key: ”hydrophobic interaction” (not a Hamiltonian!).

Example: consider the solution of CH4 in an inert, nonpolar solvent (e.g.
CCl4) compared with an aqueous solvent. (Fig) The enthalpy of solution is in
both cases < 0; again, in both cases the enthalpy gain it is more than com-
pensated by the entropy loss, which makes ∆Ggas→sol > 0. Hydrophobicity is
an entropic effect, and it is relative. ∆G for an aqueous solvent is significantly
higher in this example. Hydrocarbons are hydrophobic in this sense.

A direct relative measure of hydrophobicity for each amino acid can be given
in terms of

Z =
concentration in a nonpolar solvent

concentration in water

∆G = RT ln Z (1.1)
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Amino acid hydrophobicity is correlated with accessible surface area of each side
chain. (holds for hydrocarbons as well) (Fig 4.5, Creighton). Typical values of
hydrophobicity: 0-3 kcal/mole.
Tertiary structure not absolutely rigid - sensitive to some ”special sites”.
Flexibility of the backbone allows short-range internal fluctuations - small con-
formational changes. Enzyme molecules must be able to undergo such changes
on binding their substrates. This is part of catalytic action!

H-bonding, although important in determining local (secondary) structure,
is probably present in both folded and unfolded configurations. Therefore,
hydrogen-bonding interaction is not expected to dominate the formation of ter-
tiary structure.

Statistical approach to the hydrophobic interaction
[ref: Miyazawa & Jernigan, Macromolecules, 18, 534-552 (1985)]

Outline of the approach:

• visualize globular protein as a 3-d lattice, whose sites are occupied either
by solvent or by an amino acid residue.

• define a ”contact” between two residues as their approach within a dis-
tance of 6.5 A. Contacts due to proximity in the primary sequence do not
count (covalent-determined).

• analyze a great amount of crystallographic data to determine numbers of
contacts nij , ni0, (i, j = 1, 20), the subscript 0 stands for water.

• consider the ”chemical reaction”

(i− 0) + (j − 0) ⇀↽ i− j + 0− 0

nijn00

ni0nj0
= exp

(

− eij

RT

)

(1.2)

and assign ”interaction energies” eij , by fitting to the populations nij .

• result: 20 x 20 symmetric matrix (210 independent elements).

A further step along this direction has been done by the work of Li, Tang &
Wingreen, PRL 79, 765 (1997). They have fitted the elements of the Miyazawa-
Jernigan matrix to the form

eij = C0 + C1(qi + qj) + C2qiqj (1.3)

reducing the number of constants to 23 (The 3 C’s and 20 q’s, one for each amino
acid; moreover, the extracted q’s fall into two groups (polar and hydrophobic)
and - except in the cases of charged aminoacids - correlate well with measured
hydrophobicities.

The model is good starting point for a semiquantitative approach to the
protein folding problem.

protein folding (the issue):

Given the 1-dimensional sequence, predict the 3-dimensional structure (*)
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(highly nontrivial, yet seems to be part of the genetic program).
Consider: if each monomer can assume an average of γ (one estimate:

γ ≈ 4.6)) independent local conformations, a chain of N monomers has γN

independent conformations. Even for a small protein (N=100) the number is
huge. Sampling available conformational space for the ”right” arrangement at
the rate of 1 flip per psec is hopelessly slow. Yet (Levinthal paradox) folding
is achieved in a time scale of msec to sec. ”Gracious folding”, efficient folding
etc - On the other hand, naturally occurring proteins are a tiny fraction of all
possible amino acid sequences. This raises the question of an evolutionary bias
towards ”good folders”.

The latter issue is a strictly biological one. Physics can attempt to answer
the [strictly physical question] (*), or the more qualitative:

given the 1-d sequence and the 3-d structure, describe the folding path. (**)

A Monte-Carlo simulation of protein folding
Ref: Sali, Shakhnovich & Karplus, Nature 248, 364 (1994)

The model:

• Monomer beads on a cubic lattice

• chain of N = 27 monomers

• ”Hamiltonian”
H = −

∑

all pairs (ij)

∆i,jBi,j (1.4)

where

∆i,j =
{

1 if i, j in contact
0 otherwise (1.5)

and the interaction parameters are random, overall attractive (hydropho-
bic, consistent with Miyazawa-Jernigan)

• MC trials: shift one or two monomers at a time (cf Fig);
accept or reject changes according to Metropolis algorithm

if ∆E < 0 accept
if ∆E > 0 accept with probability e−β∆E (1.6)

MC experiment generates 200 sequences with random interactions.
Follow

• the total energy ε

• the number of total contacts (native as well as non-native) Nc

• the fraction of native contacts Q0

Findings:
Not all sequence fold to a globular state in a reasonable time (1.5 × 107 MC
steps). 30 of the 200 do. MC kinetics is reasonably related to natural thermal
motion of a native protein in solution.
(i) Folded conformation, (ii) summary of kinetics and (iii) energy spectra in first
figure.
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Figure 1.7: clockwise from top left: (i) the folded conformation (ii) Evolution of
Nc, the number of contacts and Qc, the fraction of native contacts; (iii, bottom)
Energy levels for a number of sequences; the numbers from Ref. (). Good folders
(characterized by a fraction of native contacts close to unity), are distinguished
by a well separated grounded state.
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Figure 1.8: free energy vs fraction of native contacts for a range of temperatures;
at low temperatures, the minimum corresponds to the folded state; note that
at the lowest temperatures the curve becomes ”rugged”. At low temperatures
denaturation occurs (minimum at Q0 ≈ 0.3)

The kinetics suggest a 3-state approach to folding: the first stage is fast
(∼ 104steps, after which a semicompact structure is achieved, with Q0 ∼ 0.3;
the second stage is slow (106 − 107 steps and achieves the ”transition region”.
The final stage involve sampling of the transition region itself, and is quite rapid.

It appears that the necessary and sufficient condition for successful folding
is the existence of a well separated state of minimum energy.

By ”binning” together states within a given interval of total energy and
native contact fraction, it is possible to obtain a two-dimensional histogram;
the statistics are described by

ν(Q0, ε) = ω(Q0, ε)e−βε (1.7)

where the first factor is a temperature independent density of states; summing
(1.7) over all energies,

Z(Q0, T ) =
∑

ε

ν(Q0, ε) (1.8)

it is possible to obtain a ”partition function” and a corresponding thermody-
namic free energy; the latter is shown in the Fig 1.8. The study reveals a
”thermodynamic phase transition” around T = 1.1. At lower temperatures, the
free energy minimum is at Q0 = 1 (folded state); note however the ”rugged”
structure at very low temperatures (cf. protein glass, next chapter). At higher
temperatures the system seems to favor a denatured state with a low fraction
of native contacts(Q0 ≈ 0.3).

In conclusion: the model, despite its considerable simplicity, seems to de-
scribe some of the gross features of the folding process.
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Chapter 2

Collapsed & frozen
polymers - Glassy proteins

2.1 Geometrical considerations, Flory theory

(Sections 1-3 adapated from Wolynes & Bryngelson, Biopolymers, 30, 177 (1990)).
Chain of N monomers with nearest-neighbor distance l.
End-to-end vector ~R.
Distribution of R = |~R| according to

P (R)dR =
C
R0

(

R
R0

)2

e−
3
2

(

R
R0

)2

dR (2.1)

where R2
0 = Nl2 is the mean square distance which corresponds to a random

walk.
Number of conformations: obtained by ”coarse graining”. Each monomer is
estimated to have ν0 distinct conformations. For a lattice polymer, this would
be equal to z, the coordination number of the lattice. For an ”ideal polymer”,
the number of distinct conformations with end-to-end distance in the interval
(R,R + dR) would therefore be

Ωi(R)dR = νN
0 P (R)dR . (2.2)

This number is not realistic, because it does not take account of the monomers’
tendency to avoid close contact with other monomers (”excluded volume ef-
fect”). This can be done in the following fashion:

Definitions:
Total volume of polymer in a given conformation:

V = γR3 (2.3)

Monomer volume:
vm = γσ3 (2.4)

(use same value of γ by convention, i.e. choose σ accordingly.
Generalized packing fraction: ratio of volume occupied by all monomers to total
volume

η(R) =
Nvm

V
= N

( σ
R

)3
(2.5)
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Now, visualize the monomer as being put together ”bead by bead” wthin the
volume V. Each successive monomer ”sees” a higher fraction of volume occupied.
Thus, the first bead is under no constraint at all, the second bead sees a fraction
vm/V of the total volume occupied, the third a fraction 2vm/V , the mth a
fraction (m − 1)vm/V . We argue that the number of available conformations
must be reduced by a factor ( 1 - fraction of occupied volume) at each step.
This results in an overall reduction by

ωE.V (R) =
N
∏

m=1

(

1− (m− 1)
η(R)
N

)

=
( η

N

)N N
∏

m=1

(

N
η
−m + 1

)

≈
( η

N

)N
(

N
η

)(

N
η
− 1

)

· · ·
(

N
η −N + 1

)

≈
( η

N

)N (N/η)!
(N/η −N)!

. (2.6)

Using Stirling’s approximation ln N ! ≈ N ln(N/e) for large N and N/η, we
further obtain

ln ωE.V = N
(

1− 1
η

)

ln(1− η)−N . (2.7)

Combining all geometric considerations, we obtain the number of conformations
for a ”real” polymer

Ω0(R)dR = ωE.V νN
0 P (R)dR . (2.8)

or, in terms of the entropy

S0 ≡ lnΩ0 (2.9)

= N ln ν0 + N(1− 1
η
) ln(1− η)−N + 2 ln(

R
R0

)− 3
2

(

R
R0

)2

(2.10)

where we have neglected contributions which are of order N0 or lower (e.g.
normalization constants).

Exercise (unnumbered): Integrate Ω0(R) over all R to find the total number
of conformations geometrically available to the polymer

Exercise (unnumbered): Compute the average (strictly: most probable) end-
to-end distance for a non-ideal polymer.

Solution: Use a low η expansion in the second and third term in the expres-
sion (2.10) for the entropy and minimize with respect to R.

(1− 1
η
) ln(1− η)− 1 ≈ −η

2
− η2

6
. (2.11)

Keeping the leading term, and dropping the logarithmic term in (2.10), we
obtain

S0(R) ≈ N ln ν0 −N
η
2
− 3

2

(

R
R0

)2

. (2.12)
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Minimizing S0(R) gives

∂S0(R)
∂R

= −N
1
2

∂η
∂R

− 3
2
· 2 R

R2
0

= N · 1
2
N · 3 σ3

R4 − 3
R
R2

0
,

and a most probable distance

R̄5 =
1
2
N2σ3R2

0

R̄ =
(

σ3

2l3

)1/5

N3/5l (2.13)

(Flory’s 3/5 approximate law for the self-avoiding random walk; more generally
in d dimensions the approximate theory described here predicts R̄ ∝ Nν with
ν = 3/(d+2). The prediction is exact in 1 and 2 dimensions and comes remark-
ably close to the renormalization group result 0.5880± 0.0015 in 3 dimensions).

2.2 The collapse of random heteropolymers

Until now, arguments were based purely on geometrical grounds. In order to
examine the effects of temperature (in solution) it is necessary to formulate a
theory of polymer thermodynamics. To do this we need to know something
about the energetics of polymers in solution. A useful concept in this context is
that of a ”random heteropolymer” with an overall attractive interaction between
monomers which come into contact with each other. (Note: ”Contact” in this
sense excludes those monomers which are nearest neighbors in the chain.) The
overall attraction reflects the overall hydrophobic tendency of a polymer in
solution. Assume an average value K̄ and a standard deviation ∆K for the
energy of two interacting monomers. (Note: in the limit ∆K → 0 the theory
describes homopolymers).

The number of contacts I(R)between monomers is determined by geometry;
for every monomer it is proportional to packing fraction. This gives a total
number of contacts

I(R) = zη(R)N (2.14)

where z is a geometrical factor; accordingly, the mean-field energy and its vari-
ance are given by

Ē(R) = −K̄I(R) (2.15)

and
∆E2(R) = (∆K)2I(R) (2.16)

respectively. For a given polymer size, we will assume a Gaussian distribution

g(R, E) =
1

√

2π∆E2(R)
e−

[E−Ē(R)]2
2∆E2 . (2.17)

of energy states around the mean field value. It is now possible to calculate the
number n(E)dE of polymer conformations of any size in a given energy interval
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(E, E+dE) by integrating Ω0 over R, weighted according to the Gaussian (2.17):

n(E) =
∫ ∞

0
dR g(R, E) Ω0(R)

︸ ︷︷ ︸

≡S(R,E)

> . (2.18)

The above integral is expected to be sharply peaked at large values of N . If
we are not interested in prefactors -this is the case throughout this chapter- we
estimate its value by the maximum of the integrand, i.e.

n(E) ≈ eS(R̄,E) (2.19)

where

S(R, E) ≈ lnΩ0(R)
︸ ︷︷ ︸

S0(R)

−
[

E − Ē(R)
]2

2∆E2 (2.20)

and R̄ is the value of R which maximizes S(R,E) at given E. Accordingly,
S(R̄, E) is the average entropy as a function of the energy.

The above, microcanonical formulation of polymer statistical mechanics,
which maximizes entropy at constant energy is not well suited for applications.
To describe the physics at a given temperature T , we introduce a Legendre
transform (∂S/∂E) = 1/T and minimize the free energy function F = E − TS
instead:

1

From the definition of temperature

∂S
∂E

= −
[

E − Ē(R)
]2

2∆E2 =
1
T

(2.21)

it follows that E (now, like S, a function of R and T ) is given by

E = Ē(R)− ∆E2(R)
T

. (2.22)

Introducing (2.22) in (2.20) we obtain

S = S0(R)− ∆E2(R)
2T 2 (2.23)

and hence

F (T, R) = Ē(R)− ∆E2(R)
2T

− TS0(R) (2.24)
1A quick way to recognize the mathematical basis for this procedure is to consider the

identity

d
dx

S(x, E) =
(

∂S
∂E

)

x

dE
dx

+
(

∂S
∂x

)

E
.

Maximization of S at constant E demands that the second term in the r.h.s. should vanish.
The above identity states that, if

(

∂S
∂E

)

x
has a constant value, 1/T (cf. definition of tempera-

ture), this can also be accomplished when the total derivative of S(x)−E(x)/T ≡ −F (x, T )/T
with respect to x vanishes (cf. definition of the free energy); in other words, maximization
of S(x) under the constraint E(x) = const is equivalent to an unconditional minimization of
F (x, T ) = E(x)− TS(x) at a given T .
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for the function to be minimized. The thermodynamic quantities are the values
of the above functions at the minimum R̄.
Collecting the various terms, we obtain

F (T, R) = −Nzη(R)
(

K̄ +
∆K2

2T

)

−NT ln ν0 − 2T ln
(

R
R0

)

+
3
2
T

(

R
R0

)2

+ NT
[

1− η(R)
η(R)

ln (1− η(R))− 1
]

(2.25)

Eq. (2.25) is typical of mean-field polymer collapse theories. It is general, in the
sense that it makes no restriction to a loose packing fraction η << 1. For small
η the theory simplifies; we will use this simplified form in what follows, because
it gives results in closed form; those results however are only valid if they satisfy
this criterion self-consistently, i.e. η(R̄) << 1. (cf. exercise for more general
numerical treatment).
For η << 1 the last term in (2.25) becomes η/2− η2/6; the linear term can be
combined with the first term to give

[

T
2
− z

(

K̄ +
∆K2

2T

)]

Nη (2.26)

where the brackets in the above expression can be rewritten as 1
2 (1+∆T/T )(T−

TΘ) , with TΘ = zK̄ +
√

z2K̄2 + z∆K2 and ∆T =
√

z2K̄2 + z∆K2− zK̄. Note
that ∆T = 0 if ∆K2 = 0, therefore the theory can describe the nonrandom
(homopolymer) case as well.
In the new notation, the small η limit of F can be written as

F (T, R) = −NT ln ν0 − 2T ln
(

R
R0

)

+
3
2
T

(

R
R0

)2

(2.27)

+
1
2

(

1 +
∆T
T

)

(T − TΘ)N2
( σ

R

)3
+ NT · 1

6
N2

( σ
R

)6
.

Minimization of (2.27) gives

0 =
∂F
∂R

= −2
T
R

+ 3T
R
R2

0

− 3
2

(

1 +
∆T
T

)

(T − TΘ)N2 σ3

R4 − T ·N3 σ6

R7 . (2.28)

It is possible to obtain leading-order asymptotic solutions of (2.28) as N >> 1,
R̄ ∝ Nν by examining the order of the various terms; they are:

Term order
1 N−ν

2 Nν−1

3 N2−4ν

4 N3−7ν

(2.29)

Note that the second term is larger than the first if ν > 1/2, and the third term
is larger than the fourth if ν > 1/3. We distinguish 3 cases.
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(i) uncollapsed solutions: If we look for solutions with ν > 1/2, it is
sufficient to keep the second and third terms. This gives positive solutions

R̄ =
{

σ3

2l3

(

1 +
∆T
T

) (

T − TΘ

T

)}1/5

N3/5l (2.30)

if T > TΘ. At temperatures far higher than both TΘ and ∆T , these uncollapsed
solutions reduce to the result (2.13) determined by geometry alone.

(ii) collapsed solutions: we note that the third term is larger than the
first if ν < 2/3. Then if we look for solutions with ν < 1/2, it is sufficient to
keep the third and fourth terms. This gives positive solutions

R̄ =
{

3
2

(

1 +
∆T
T

)(

TΘ − T
T

)}−1/3

N1/3σ (2.31)

if T < TΘ; the corresponding packing fraction is

η(R̄) = N
( σ

R̄

)3
=

3
2

(

1 +
∆T
T

)(

TΘ − T
T

)

(2.32)

i.e. the state is indeed compact, with packing fraction of order N0; on the other
hand, as long as the temperature stays in the approximate vicinity of TΘ, the
packing fraction remains much smaller than unity; therefore the self-consistency
of the theory is guaranteed (cf. above) in the vicinity of the Θ-point.

(iii) the marginal case: at T = TΘ the third term vanishes; the resulting
equation

3
(

R
R0

)8

−
(

R
R0

)6

=
(σ

l

)6
(2.33)

always has a solution of the form R̄/R0 = f(σ/l). The solution is uncollapsed,
yet less extended than the geometrical (2.13); it is of order N1/2 (as the Gaussian
random walk; but note that the prefactor is not the same).

Note that the approximate solutions given above for R̄(T,N) in cases (i) and
(ii) above cannot remain valid in the immediate vicinity of the theta point; this
is obvious for example in the case (i), since R̄) becomes increasingly collapsed-
like; conversely, as we approach Tθ from below, the solution (2.30) ”opens up”
in more and more. It is possible to invoke concepts of homogeneity and scaling
(Exercise ..) to find solutions which describe the asymptotic behavior of R̄(T, N)
arbitrarily close to the critical point. A useful corollary of this generalization
is that the entropy is a continuous function of the temperature, i.e. there is no
latent heat connected with the phase transition.

2.3 Application to proteins

Combinatorics:
No of conformations for each monomer:

ν0 = ν + 1 (2.34)

-one ”native”, rest non-native-. (Note: the number ν should not be confused
with the critical exponent ν used in the previous section).
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Consider a protein with N monomers. Of these, ρN are in the folded state and
(1−ρ)N in the non-folded state. (macroscopic description of the degree of order;
use the language of phase transitions; ρ is in this sense an order parameter; in
particular ρ = 1 corresponds to the completely folded state.).

Modify heteropolymer theory by considering the different conformational
freedom of native and non-native residues. A nonnative residue can assume ν
conformations. A native only one. And the number of ways we can select ρN
natives and (1−ρ)N nonnatives provides an additional conformational freedom
for nonfolded states. Instead of the simple νN

0 factor, we now have a total of

C(N, ρ) =
N !

(Nρ)![N(1− ρ)]!
νN(1−ρ) (2.35)

coarse grained conformations for an N-monomer protein. Note that C(N, 1) = 1;
the completely folded state has no conformational degrees of freedom. The
number of conformations of an N-monomer protein with folding fraction ρ and
end-to-end distance between R and R + dR is now

Ω∗(R, ρ)dR = ωE.V.C(N, ρ)P (R) (2.36)

and, after straightforward computations (Stirling appr. ),

S∗(R, ρ) = ln Ω∗

= N [(1− ρ) ln ν − (1− ρ) ln(1− ρ)− ρ ln ρ]

− N
[

1− η
η

ln(1− η) + 1
]

+ 2 ln
R
R0

− 3
2

(

R
R0

)2

(2.37)

Energetics:
Proteins are different from other heteropolymers in that they are ”engineered”
to fold into a particular (native) structure. In order for this to happen, different
interactions must have a tendency to reinforce each other.
(Observation: lots of secondary structure present)
concept: minimal frustration
(should tend to favor ordered state rather than ”protein glass”).
Simple model:

• associate an energy −ε with each residue in native conformation. (zero if
in non-native conformation).
(”primary structure energy”: not really an interaction (on-site term); how-
ever, it favors conformations with the right sequence, which will eventually
fold). This contributes

Eprimary(ρ) = −Nρε (2.38)

to the total energy of the protein (straightforward and exact: there are
ρN residues in folded state).

• associate an energy −J with each residue and its predecessor are in native
conformation. (zero if not)
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(”secondary structure energy”: favors ordering at a local level). This
contributes, in the m.f. approximation

Esecondary(ρ) = −Nρ2J (2.39)

(for each residue in folded state, probability ρ that the predecessor will
also be in folded state).

• describe the overall hydrophobic effect in a fashion which favors folding:
Modify the interactions of heteropolymer if both partners are in folded
state; the energy is then -K (with no spread) rather than -K̄. On the
average, each interacting pair contributes −ρ2K− (1−ρ2)K̄. The average
number of interactions is as in the heteropolymer case, I(R) = zη(R)N .
This gives

Etertiary(R, ρ) = −I(R)
[

K + (1− ρ2)K̄
]

(2.40)

∆E2(R) = I(R)(1− ρ2)∆K2. (2.41)

The total m.f. energy Ē(R, ρ) is the sum of the 3 terms above (primary,
secondary, tertiary).

Eq. (2.41) represents all fluctuations. There is no other randomness.

carry on with heteropolymer program:
however, note that the variables ρ and R are not really independent. As the
protein folding fraction increases, the overall structure generally becomes more
compact, i.e. R should decrease. If ηf is the packing fraction of the folded
protein (typically: 0.75)

R ∼
(

N
ηf

)1/3

σ , (ρ → 1) . (2.42)

Conversely, as the protein unfolds completely, its size tends to follow the 3/5
law:

R ∼ 2−1/5
(σ

l
N

)3/5
l , (ρ → 0) . (2.43)

If we minimize independently with respect to ρ and R, unphysical solutions may
occur. ”Radical” assumption: interpolate between the two extreme cases.

R(ρ) = 2−1/5
[σ

l
N(1− ρ)

]3/5
l , 0 ≤ ρ < ρf (2.44)

=
(

N
ηf

)1/3

σ , 0 ≤ ρf ≤ 1 (2.45)

where ρf is determined by the demand of continuity,

ρf = 1−
(

2σ2

l2

)1/3 1

N4/9η5/9
f

(2.46)

and is interpreted as the fraction of residues which are in their native state in
a folded protein which fluctuates in solution. Typical values ηf = 0.75, N =
150, σ = l/

√
2, give ρf = 0.9 (reasonable).
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The proposed interpolation, although not exact, makes sense qualitatively:
the non-native portion of the protein does a self-avoiding-random-walk and dom-
inates the size for most values of ρ (except those which approach the folded
state).

We now proceed with minimization with respect to a single variable, ρ. The
number of states with energies in the interval (E,E + dE) is given by

n(E)dE =
∫ 1

0
dρ g(ρ,E)Ω∗(ρ) (2.47)

where the probability of finding a given energy E (at a particular ρ) is

g(ρ,E) =
1

√

2π∆E2(ρ)
e−

[E−Ē(ρ)]2
2∆E2 . (2.48)

Again, the idea is that the integrand of Eq. (2.47), denoted as eS(ρ,E), should
have a sharp maximum with respect to ρ, which will dominate the integration.
Neglecting logarithmic terms,

S(ρ,E) = S∗(ρ)−
[

E − Ē(ρ)
]2

2∆E2 . (2.49)

Again, rather than finding the maximum of S(ρ, E) at a given E (microcanon-
ical), we perform a Legendre transform, and look for the minimum of the free
energy at a constant temperature (canonical):

Thermodynamic definition of temperature
(

∂S
∂E

)

=
1
T

, (2.50)

Use (2.49) in (2.50) to obtain

E(T, ρ) = Ē(ρ)− ∆E2(ρ)
T

(2.51)

and (2.51 ) in (2.49) to obtain

S(T, ρ) = S∗(ρ)− ∆E2(ρ)
2T 2 . (2.52)

The free energy function to be minimized is

F (T, ρ) = E(T, ρ)− TS(T, ρ)

= Ē(ρ)− ∆E2(ρ)
2T

− TS∗(ρ) . (2.53)

In collecting the various terms which contribute to (2.53), note that both the
tertiary energy (included the first term) and the fluctuations (second term)
contribute terms proportional to −Nzη. The proportionality constants are
ρ2K + (1 − ρ2)K̄ from the tertiary term and (1 − ρ2)∆K2/(2T ) from the
fluctuations term. This suggests defining a temperature-dependent function
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K1(T ) = K̄ + ∆K2/(2T ), to combine the two contributions. The result is

F (T, ρ) = −Nρε−Nρ2J −Nzη(ρ)
[

K1(T ) + ρ2(K −K1(T ))
]

+NT
[

(1− ρ) ln
1− ρ

ν
+ ρ ln ρ +

1− η
η

ln(1− η) + 1
]

−2T ln
R
R0

+
3
2
T

(

R
R0

)2

. (2.54)

For typical values N = 150, z = 2, ε = 0.1, J = 2.0,K = 0.6, K̄ = 0.3, ∆K2 =
0.2 and ηf = 0.75, σ = l/

√
2 (ρf = 0.9, cf. above) one obtains at T = 1

a double-well potential. The absolute minimum near ρf corresponds to the
folded state. The other minimum is at relatively low ρ (semicompact states).
The transition is first order (cf. exercise). As the temperature increases, the
low-folding-fraction minimum becomes stable. The protein is more likely to be
found in semicompact conformations (thermal denaturation).

Protein glass: In principle, it is possible, particularly if the disorder is high,
for the entropy to become negative. As the entropy approaches zero from above,
the system experiences an ”entropy crisis”. For protein folding to proceed prop-
erly, the ”entropy crisis” (freezing, transition to a glassy state ) should occur at
much lower temperatures (cf. exercise, compute entropy as a fn. of T). ”Freez-
ing” is defined by the vanishing of the right-hand-side of (2.52), which suggests
that

T 2
fr =

∆E2(ρ̄)
2S∗(ρ̄)

(2.55)

where the bar means that the folding fraction should be determined self-consistently
by minimization of the free energy at T = Tfr. ¿From the point of view of
unnhibited folding, one would like to ”guarantee” that freezing does not com-
pete with collapse, i.e. Tfr << TΘ.

2.4 Kinetics of protein conformations

[Ref. Bryngelson & Wolynes, J. Phys. Chem. 93, 6902 (1989)]
Description of ”energy landscape” (local minima): analogies to theory of com-
plex chemical reactions.
starting point: enumeration of residues found in native and nonnative confor-
mations; number of possible conformations C(N, ρ) (cf previous section).and its
logarithm

S∗(ρ) = ln C(N, ρ) . (2.56)

Geometry at this stage not explicit
Energy distribution: Gaussian (2.48).
Classification of states according to their number of native residues helps formu-
late the question of ”which states are connected to a given state”. We restrict
transitions to those involving conformational changes of a single amino acid.
Such changes can happen in νN ways, i.e. each conformation is ”connected” to
νN others. The following table shows schematically how a state with ρN native
residues is connected to states with ”neighboring” states ”connected” with it.
Changes of type ⇓ take a native residue and transform it to a nonnative; changes
of type ⇑ take a nonnative residue and transform it to a native; finally, changes
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of type ⇒ take a nonnative residue and transform it to a different nonnative,
without changing the overall number of native residues.

# of native residues type of transition # of paths

ρN + 1
⇑ (1− ρ)N

ρN ⇒ (1− ρ)(ν − 1)N
⇓ ρNν

ρN − 1

νN

Local minima (definition): a state of energy E0 is a local minimum (LM) if
all Nν states connected to it have a higher energy. Probability for this

PLM (E0, ρ) =
[∫ ∞

E0

dE g(E, ρ)
]Nν

(2.57)

where the quantity in the brackets represents the probability that any one of
the connected states has an energy higher than E0. This assumes that, although
individual energy changes can be large, the density of states does not change
appreciably during conformational flips.
It is possible to integrate (2.57) over the energy distribution in order to obtain
the probability that any given conformation, independently of its energy, is a
local minimum. The integral

pLM (ρ) =
∫ ∞

−∞
dE0 PLM (E0, ρ) g(E, ρ) (2.58)

is of the form

−
∫ ∞

−∞
dx φ′(x)φm(x) =

1
m + 1

(2.59)

with φ(x) =
∫

−g(x), and the evaluation has been done using the properties
φ(∞) ≡ 0 and φ(−∞) = 1 (normalization). This leads to a probability

pLM =
1

Nν + 1
(2.60)

independent of the number of native residues. The average number of local
minima can now be found to be

< nLM > =
N

∑

ρN=0

C(N, ρ) pLM

=
(1 + ν)N

1 + νN
. (2.61)

The last statements about conformational space are independent of the details
of the energy distribution. The number of local minima is still astronomical;
however, for ν = 10, N = 100 it represents only .1% of all states. We expect the
deeper minima to be of significance (kinetic traps, misfolded structures, folding
intermediates).
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Statement about energy distribution of local minima?
We know the total number of LM, the probability that a state of given energy is a
LM, and the overall distribution of energies. The normalized energy distribution
of LM is given by

gLM (E0, ρ) = (Nν + 1) g(E0, ρ) PLM (E0, ρ) . (2.62)

To obtain a more useful form of (2.62), note that the brackets in (2.57) can be
written as

∫ ∞

E0

dE g(E, ρ) =
∫ ∞

−∞
dE g(E, ρ)−

∫ E0

−∞
dE g(E, ρ)

= 1−
∫ E0

−∞
dE g(E, ρ)

≈ e
−

∫ E0

−∞
dE g(E,ρ)

(2.63)

provided that the remaining integral is in some sense (to be made precise below)
much smaller than unity. Note that if this is not the case, raising it to a very
high power (cf (2.57)) will make the r.h.s of (2.62) vanish. We now define a
”threshold energy” via

∫ Ec(ρ)

−∞
dE g(E, ρ) =

1
Nν

. (2.64)

We can now make a rough estimate of the r.h.s of (2.62) as follows: If the
argument of the exponential in PLM (including the Nν factor) is smaller than
unity we set the exponential equal to one; if it is larger than unity we set the
exponential equal to zero. This results in the approximate energy distribution
of LM

gLM (E0, ρ) ≈ Nν
√

2π∆E2(ρ)
e−

[E0−Ē(ρ)]2
2∆E2 (if E0 < Ec(ρ))

≈ 0 (if E0 > Ec(ρ)) . (2.65)

The value of the threshold can be obtained from the leading-order asymptotics
of the error function and is given by

Ec(ρ) = Ē(ρ)− [2 ln(Nν)]1/2 ∆E(ρ) (2.66)

Eqs. (2.65) and (2.66) are very strong statements about local minima. The
approximate distribution function states that there are no LM in appreciable
numbers above Ec; on the other hand, the threshold Ec itself is in the tail of the
Gaussian energy level distribution: for N = 100 (relatively small) and ν = 10,
[2 ln(Nν)]1/2 = 3.7. Furthermore, because PLM is approximately equal to unity
if the energy is below threshold, essentially all energy levels below Ec are local
minima.

The state of lowest energy can be estimated from the condition

g(Elow(ρ)) =
1

C(N, ρ)
(2.67)
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which expresses the probability of finding an isolated state. This leads to

Elow(ρ) = Ē(ρ)− [2S∗]1/2 ∆E(ρ) (2.68)

Kinetics; escape rate from a LM: we use Metropolis (Monte Carlo, MC)
kinetics. The transition from state A to state B takes place with a rate

ΓAB =
{

Γ0e−β(EB−EA) if EB > EA
Γ0 if EB < EA

(2.69)

Total escape rate from E0:

Γ̄(E0, ρ) = Γ0

∑

{i} connected to LM

e−β(Ei−E0)

= Γ0νN

∫∞
E0

dE g(E, ρ) e−β(E−E0)

∫∞
E0

dE g(E, ρ)
(2.70)

where the denominator has been introduced in order to provide the correct
normalization, since we only integrate over states with energies above E0. In
fact, we have already proved that the denominator in (2.70) is unity (within our
estimation scheme), since all LM are in the tail of the Gaussian.

We still have to calculate the integral

I(E0) =
1√

2π∆E

∫ ∞

E0

dE ef(E) (2.71)

where

f(E) = − (E − Ē)2

2∆E2 − β(E − E0)

= f(Em)− 1
2∆E2 (E − Em)2 (2.72)

and in the second line we have written f in terms of its maximum value

f(Em) = −β(Ē − E0) +
1
2
(β∆E)2 (2.73)

at
Em = Ē − β∆E2 . (2.74)

We distinguish two cases:
I. If Em > E0 or, equivalently,

E0 < Ē − β∆E2 (2.75)

the maximum falls inside the integration region. The integral is approximated
by exp[f(Em)] and the result is

Γ̄I(E0, ρ) = νN Γ0 e−β(Ē−E0)+ 1
2 (β∆E)2 (2.76)

Note that (by definition) E0 > Elow, and therefore, from (2.68) and (2.75) the
double inequality

β∆E2 < Ē − E0 < (2S∗)1/2∆E (2.77)
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holds; hence in case (I)

T > Tlow(ρ) ≡ ∆E(ρ)
(2S∗)1/2 (2.78)

must hold; if T < Tlow(ρ) there is no contribution to the decay rate from case
(I).

II. If Em < E0 or, equivalently,

E0 > Ē − β∆E2 (2.79)

the maximum falls outside the integration region. Note first that since E0 < Ec

(cf. above), now the double inequality

β∆E2 > Ē − E0 > [2 ln(Nν)]1/2∆E (2.80)

holds; hence in case (II)

T < Thigh(ρ) ≡ ∆E(ρ)
[2 ln(Nν)]1/2 (2.81)

must hold; if T > Thigh(ρ) there is no contribution to the decay rate from case
(II).

An estimate of the integral (2.71) can now be obtained as follows: The
integrand is a product of an exponential, peaked at E − E0 and with a width
T , and the Gaussian from the energy density of states. From (2.81), T is
significantly smaller than ∆E, thus the peaks of the two functions are well
separated (cf Fig). This allows us to set E ≈ E0 in the Gaussian and pull it out
of the integral; the result is a Gaussian

Γ̄II(E0, ρ) = νN Γ0 e−
1
2

(

E0−Ē
∆E

)2

(2.82)

where the prefactor has been fixed by the requirement of continuity at E0 = Em.
In summary, the average escape rate from a LM is a monotonic function of

the LM energy

Γ̄(E0, ρ) =







Γ̄I(E0, ρ) if E0 ≤ Ē − β∆E2

Γ̄II(E0, ρ) if E0 ≥ Ē − β∆E2
(2.83)

At E0 = Ē − β∆E2 it follows from either alternative that

Γ̄(Ē − β∆E2, ρ) = νN Γ0 e−
1
2 (∆E

T )2

≡ Γ∗(ρ) . (2.84)

Note further that (i) escape rates must be in the interval (Γmin, Γmax), where

Γmin(ρ) = Γ̄(Elow, ρ) = νN Γ0 e−(2S∗)1/2β∆E+ 1
2 β2∆E2

(2.85)

Γmax(ρ) = Γ̄(Ec, ρ) = Γ0 (2.86)

and (ii) at the special temperatures Thigh(ρ) and Tlow(ρ) the following relation-
ships hold, respectively

Γmin(ρ) = Γ∗(ρ) = νNΓ0e−S∗ [ at T = Tlow(ρ)] (2.87)
Γmax(ρ) = Γ∗(ρ) [at T = Thigh(ρ)] . (2.88)
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Figure 2.1: A typical ”flat” distribution of escape rates for T < Tlow according
to Eq. (2.91b). The temperature enters only via the lower cutoff γ∗ ≡ Γ∗/Γ0.

Distribution of escape rates: Let N (Γ)dΓ be the number of LM with escape
rates in the interval (Γ,Γ + dΓ). We can write

N (Γ, ρ) =
∫ +∞

−∞
dE0 gLM (E0) δ

[

Γ− Γ̄(E0, ρ)
]

(2.89)

=
gLM (E0)

∣

∣

∣

∂Γ̄(E0,ρ)
∂E0

∣

∣

∣

Γ̄(E0,ρ)=Γ

. (2.90)

A straightforward calculation (Exercise ..) yields

N (Γ, ρ) =















(2π)−1/2 T
Γ0∆E e−

1
2{ T

∆E ln Γ
Γ∗ }

2

if Γmin < Γ < Γ∗

(2π)−1/2 1
Γ0

1
√

2 ln( νNΓ0
Γ )

if Γ∗ < Γ < Γmax

(2.91)

The purist will note thatN (Γ, ρ) is discontinuous at Γ∗; the discontinuity reflects
the discontinuity of the derivative of Γ̄(E0) at E0 = Em.

Discussion: If we look at the slowest escape rate, Γmin as a function of
temperature, we note that it has a minimum at T = Tlow. (interpretation:
dynamical freezing transition occurs at the same temperature as the freezing
predicted by the mean-field equilibrium theory). For temperatures T < Tlow,
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the distribution is given solely by the form (II) [since Γ∗ < Γmin there is no
region I] and is very broad, characteristic of the glassy state (cf. Fig. 2.1). Long
relaxation times are almost equally probable with short relaxation times.

In the intermediate temperature regime Thigh > T > Tlow, both Γ regions
are present. Faster rates are distributed according to II (broad), slower rates
according to I (cf. Fig. 2.2). Very slow rates are inhibited by the exponential in
I, i.e. they are not favored. This is important from the point of view of protein
folding. Kinetic traps created by local minima with long escape rates should
not be prevalent along the folding path, since they would create a ”bottleneck”.

0,0 0,2 0,4 0,6 0,8 1,0
0,00

0,02
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N=100, ν=10
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γ* >νNe-S*

 Γ/Γ
0

N(Γ,ρ)Γ0

Figure 2.2: Typical distribution of escape rates at intermediate temperatures.
Both cases of Eq. (2.91) contribute. Very slow rates are suppressed by the form
of (2.91a).

A final note: The absolute minimum of relaxation rates which occurs at Tlow
represents the entropy crisis from a dynamical viewpoint. Rewriting (2.87) as

Γ∗(Tlow) = νNΓ0 e−S∗ =
νNΓ0

Ω∗
(2.92)

we note first by a formal comparison with the Arrhenius expression rate ∝
e∆S−β∆H that a huge negative entropy controls the escape rate at this ex-
tremum; alternatively, we use the second expression in order to identify a longest
escape time

τ∗max =
1

Γ∗(Tlow)
=

1
Γ0

1
νN

Ω∗ (2.93)
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In a sense this is the ”Levinthal catastrophe”: all paths must be sequentially
explored.

A detailed, semiquantitative theory of the folding process has been devel-
oped by Bryngelson and Wolynes using the concepts developed above. Although
the technical part is slightly beyond the scope of these lectures, its rationale is
relatively straightforward. A protein state with a given folding fraction, is con-
sidered as a ”kinetic trap”, for which the concept of a continuous time random
walk (CTRW, Montroll & Weiss, J. Math. Phys. 6, 167(1965)) is applicable.
What this says, in a nutshell, is that the protein performs a diffusion in ρ-space,
driven by the thermodynamic potential, which is roughly described by the ef-
fective free energy at a given ρ and T . Folding is thus described as a driven
diffusion process, which starts at a state of low ρ, escapes the kinetic traps and
eventually enters the ρ = ρf state. In statistical physics, this is cast in the
form of a ”first passage time” problem. I will deal with a simpler case of such
a problem in a later lecture.
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Chapter 3

Phase transitions in
biopolymers

3.1 Introductory remarks

Examples:

1. protein unfolding of 3d structures
ribonuclease (reversible)

2. DNA ”melting”: separation of the two strands of the double helix

3. synthetic polypeptide chains. Breakup into ordered (helical) and disor-
dered (coiled) regions. Ideal for studying the properties of secondary
structure.

We have discussed some aspects of (1) in the previous chapter. here: 2 and
3, with complementary theoretical approaches. Will use (3) as starting point.
Language more physico-chemical; in (2) modern statistical physics. Physicists
should not ”look down” on type (3) formalism. This is the language of experi-
ments! Ideally, approaches should be complementary and translatable.

physical chemistry ←→ physics

statistical mechanics

3.2 Helix-Coil transitions

residues in helical regions give rise to optical rotation. At given N (controlled
in synthetic polypeptides) one can measure the helix fraction. Typically, that
fraction completes the transition from 1 to 0 over a fairly narrow temperature
range ( a few degrees K in the case of long chains). Chemists describe the
process

A ←→ B (3.1)

(helix) (coil) (3.2)
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as an equilibrium between the two species,

K =
cB

cA
= e−∆G/(RT ) (3.3)

where the helix fraction is given by

Θ =
cA

cA + cB
=

1
1 + K

. (3.4)

Sign convention: We are looking at the conversion of helix (A) to coil (B). There-
fore ∆G = GB −GA, and ∆H (cf. below) is positive (the helix is energetically
favored).

The value Θ = 0.5 defined the midpoint of the transition, Tm. At that
point, the apparent equilibrium constant K = 1. (Apparent because, it does not
describe the microscopic states which contribute to the macroscopic observable).

If we write
∆G = ∆H − T∆S (3.5)

and assume (although this is not exact, and sometimes not even a good approx-
imation) that the enthalpy and entropy differences do not depend very much on
temperature, we obtain

d ln K
dT

=
∆H
RT 2 (3.6)

and
(

dΘ
dT

)

Θ=0.5
= −1

4
∆H
RT 2 . (3.7)

The inverse of Eq. (3.7) measures the width of the transition (in degrees K). A
sharp transition (of a few degrees K) has a high [van’t Hoff] ∆H (of the order
of 100 Kcal/mol), indicating that perhaps as many as 100 hydrogen bonds are
cooperatively broken during the transition.

Theoretical models (underlying ideas):

I. an existing helix may grow further at the nth site, or shrink. This is viewed
as a forward and reverse reaction, with a rate ratio s = exp(−∆G∗/(RT )),
which reflects the difference in local free enrgies between the helix and coil
states. If the ratio is greater than unity, the helix has a tendency to grow.
If it is less than unity, the helix will shrink. At temperatures near the
transition, s = O(1). The enthalpy difference ∆H∗ corresponds to the
energy of a single hydrogen bond formed or broken in the process.

II. Nucleation is a distinct process. In order to initiate a helix, 3 residues have
to organize themselves. Again, viewing nucleation as a forward / reverse
reaction, we can introduce a dimensionless σ = exp(−∆Ginit/(RT )). The
large difference in the free energy comes mostly from the entropy loss
associated with the organization of the 3-4 residues involved in the first
turn of the helix.

Theoretical models (the particulars ):
0 th order: The ”all or nothing” (AON) model (mainly for completeness).
Only two states are significant within this model. The pure coil, with relative
statistical weight equal to unity; and the helix with N residues, with a relative
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Figure 3.1: The helix-coil transitions in polypeptides of variable length , u(N =
26), •(N = 46), ◦(N = 1500) (after Doty et al, PNAS, 45, 1601 (1959).

weight σsN . Intermediate states are suppressed, presumably due to high rate
barriers. This gives a helix fraction

Θ =
1
N

NσsN

1 + σsN (3.8)

and a slope at midpoint
(

dΘ
dT

)

Θ=0.5
= −N

4
∆H∗

RT 2
m

. (3.9)

There is strong cooperativity.
further considerations: The zipper model

The model allows a single connected helical region of any length n ≤ N . The
statistical weight (Boltzmann factor) is -according to the general considerations,
cf. above-, σsn, and the helix can commence at any of the first An = N −n + 1
positions. This gives a partition function

Z = 1 +
N

∑

n=1

Anσsn (3.10)

and a helical fraction

Θ =
1
Z

N
∑

n=1

nAnσsn

=
1
Z

s
∂Z
∂s

=
∂ ln Z
∂ ln s

. (3.11)
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The partition sum can be evaluated to give

Z(N) = 1 + σsN+2 − (N + 1)s +
N

(s− 1)2
. (3.12)

The generalized zipper model
The only difference is topological: helical and coil regions may alternate without
any further constraints. One associates the following weights:
1 if coil comes after helix or coil
s if helix comes after helix
σs if helix comes after coil (nucleation).
The model thus implements considerations (I) and (II) above, without imposing
any further constraints. The state of the residue at site i can be described by a
2-vector νi, and the partition function is given by

ZN =
∑

{ν1}...{νN}

< ν1|T |ν2 >< ν2|T |ν3 > ... < νN−1|T |νN >

=
∑

{ν1},{νN}

< ν1|TN |νN > (3.13)

where the matrix elements of T express the Boltzmann factors specified above.

T =
(

s 1
σs 1

)

. (3.14)

To evaluate the partition sum, apply PBC (convenient, not a must); we obtain

ZN = TrTN = λN
0 + λN

1 (3.15)

where the eigenvalues are given by

λ0,1 =
1
2

[1 + s±∆] (3.16)

∆ =
√

(1− s)2 + 4σs (3.17)

and, in the lage N limit, Z is dominated by the largest eigenvalue, λ0.
Note that the partition function (not the T-matrix) can be mapped onto the

one of the ferromagnetic Ising model (exchange interaction J, magnetic field h,
with the identifications

s ⇔ e−2βh (3.18)

σ ⇔ e−2βJ (3.19)

λmagnetic = eβ(J+h)λhelix−coil . (3.20)

To obtain the helix fraction, note that if the probability of obtaining a helical
segment of length k is given by φk(σ)ksk, where φ is the coefficient of sk in the
partition sum. This gives

Θ =
1
N

1
Z

N
∑

k=1

φk(σ)ksk

=
1
N

1
Z

s
∂Z
∂s

=
1
N

∂ ln Z
∂ ln s

≈ ∂ ln λ0

∂ ln s
.
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One can now verify that as s → 1, ∆ → 2
√

σ, Θ → 1/2; for σ << 1 (cf. below),
this gives

(

dΘ
ds

)

s=1
=

1
4
√

σ
(3.21)

or
(

dΘ
dT

)

Θ=0.5
= − 1

4
√

σ
∆H∗

RT 2
m

. (3.22)

i.e. the width of the transition is

∆Tm = 4
√

σ
RT 2

m

∆H∗ . (3.23)

Expt. by Doty et al (PNAS 45, 1601 (1959)). Data for short (N=26,46) and long
(N=1500) chains. Fits with σ = 2× 10−4, ∆H∗ = 4.14kJ/mole (cf calorimetric
measurements ∆H = 3.97kJ/mole ). Interpret 1/

√
σ as number of residues

cooperatively involved in the transition. (comparison with AON theory) follows
also from Ising theory, since the inverse correlation length is given (in lattice
constants) by

1/ξ = λ1 − λ0 = 2
√

σ (at s = 1) . (3.24)

Chemical language provides an independent estimate for σ = e−∆Ginit/RT ≈
e∆Sinit/R: Initiation of the helix involves oraganization of J (=3,4) residues,
each one by 2 dihedral angles. Typically a dihedral angle can take 3 indepen-
dent orientations in space. This gives a total of 32J states, or an entropy loss
∆Sinit/R = −2J ln 3. (J=3, 6.6; J=4, 8.8). This compares favorably with
ln σ = 8.5.

Similarly, one can relate the entropy loss involved in helix growth, to the
energy of the H-bond. At the transition, ∆S∗ = ∆H∗/Tm = 1.85R. This
compares favorably with the estimate 2 ln 3 ≈ 2.20, obtained by considering the
2 dihedral angles which must be organized to admit a residue into the helix.

Theory in a sense ”complete”. reasonable assumptions, Well studied area.
Many quantitative discrepancies. Enthalpies and entropies not constant etc. etc.
The analysis depends very strongly on the Ising theory and therefore excludes
the occurrence of an exact transition as N → ∞ (even though the experimen-
tal evidence seems to support it). Physicist’s more fundamental critique (and
perhaps potential contribution): This is not what we understand in physics as
a cooperative phenomenon. Point is not whether it is mathematically sharp or
not; rounding always exists for a variety of reasons. Point is that statistical me-
chanics, as the physicist understands it, has a somewhat different agenda: Given
some material-dependent but T-independent parameters of the Hamiltonian it
sets out to predict material behavior as a function of temperature. Helix-coil
theory does not do that.

3.3 Hamiltonian approach to DNA denaturation

The model [Peyrard & Bishop, PRL 62, 2755 (1989); Theodorakopoulos, Daux-
ois & Peyrard, ibid 85, 6 (2000)]:
Two parallel, harmonic chains, with lattice constant l, joined in the form of
a ladder by anharmonic springs (H-bonds,modelled by a Morse potential) The
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Figure 3.2: Absorbance vs temperature and differential melting curve for the
1630bp Hinf I restriction endonuclease DNA fragment of the pBR322 (cf Wartell
& Benight, Phys. Repts 126, 67 (1985)).

emphasis is on modelling the unbinding of the two chains, not the helical as-
pect of the ordered state. Lesson of theory of critical phenomena: ”essentials”
of the interactions completely determine the critical behavior. Identifying the
essentials is of course a non-trivial issue when dealing with new phenomena.

Htot =
m
2

∑
[

u̇2
n + v̇2

n + ω2
0 (un − un−1)

2 + ω2
0 (vn − vn−1)

2
]

+
∑

n

V (un − vn)

(3.25)
where

V (x) = D(e−ax − 1)2 . (3.26)

We have assumed that the bases have equal masses and are connected by ”trans-
verse harmonic springs” of equal strength.
Transformation to CM and relative coordinates, Xn = (un + vn)/2, yn = un −
vn,M = 2m, 1/µ = 2/m decouples longitudinal from transverse Hamiltonian,
i.e.

Htot = H0(X) + H(y) (3.27)

where

H0(X) =
∑

n

[

P 2
n

2M
+

1
2
Mω2

0(Xn −Xn−1)2
]

(3.28)

where Pn = MẊn is the canonical momentum conjugate to Xn, and

H(y) =
∑

n

[

p2
n

2µ
+

1
2
µω2

0(yn − yn−1)2 + V (yn)
]

. (3.29)
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where pn = µẏn is the canonical momentum conjugate to yn.
H0 is just the Hamiltonian of a harmonic chain with the total base pair mass

per site. It gives an additive nonsingular contribution to all thermal properties.
We will neglect in what follows.

Classical thermodynamics of H:
Canonical partition function

Z =
∫

dΓe−βH (3.30)

where dΓ is shorthand for the full set of canonically conjugate phase space
coordinates, i.e.

dΓ =
N
∏

n=1

dpndyn . (3.31)

One can immediately perform the Gaussian integrals over momentum space
(this is the technical advantage of classical physics - no commutation problems
to worry about!). Z splits into 2 factors

Z = ZKZP , (3.32)

where each integration in the kinetic part contributes a (2πµ/β)1/2 factor, i.e.

ZK = (2πµ/β)N/2 (3.33)

to the partition function. The nontrivial part is

ZP =
∫

(

N
∏

n=1

dyn

)

T (y1, y2) · · ·T (yN−1, yN )T (yN , yN+1) (3.34)

where

T (x, y) = e
−β

[

µω2
0

2 (y−x)2+V (x)
]

(3.35)

and can be evaluated as follows (Transfer integral method, note the conceptual
analogy with the transfer matrix method of the Ising model):

Consider the eigenvalue problem defined by the asymmetric kernel T (the
kernel can be easily symmetrized but we need not do so; in fact, working with
the asymmetric kernel is technically advantageous in examining the validity of
some approximations, cf. below):

∫ ∞

−∞
dy T (x, y) ΦR

ν (y) = ΛνΦR
ν (x) (3.36)

∫ ∞

−∞
dy T (y, x) ΦL

ν (y) = ΛνΦL
ν (x) , (3.37)

where left and right eigenstates have been assumed to be normalized; note that
the normalization integral is

∫

dxΦL
ν (x)ΦR

ν (x). Orthogonality
∫ ∞

−∞
dx ΦL

ν (x) ΦR
ν′(x) = δνν′ (3.38)
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and completeness
∑

ν

ΦL
ν (x) ΦR

ν (y) = δ(x− y) (3.39)

relationships hold. We will further use the notation

Λν = e−βεν (3.40)

(assumes nonnegative eigenvalues; this can be proved for the particular form of
the kernel). Note further that the integrand of (3.34), as written down has a
problem: it includes a reference to the displacement yN+1 of the N+1st particle,
which has not yet been defined. For a large system, this is best remedied by
means of periodic boundary conditions (PBC), i.e. by demanding that yN+1 =
y1. Alternatively, we may extend the integration to one more variable, dyN+1,
and introduce a factor δ(yN+1 − y1) to take care of PBC. This however is the
same as the sum in the left-hand-side of (3.39). We then obtain

ZP =
∑

ν

∫

dy1 · · · dyN+1ΦL
ν (y1)

︸ ︷︷ ︸

T (y1, y2) · · ·T (yN , yN+1)ΦR
ν (yN+1)

︸ ︷︷ ︸

. (3.41)

The braces make clear that we can perform the integral over dyN+1 and obtain
a factor ΛνΦR

ν (yN+1), using the defining property of right-hand eigenfunctions.
The process can be repeated N times, each time giving a further factor Λν and
a right eigenfunction with an argument whose index is smaller by one. At the
end, we are left with

ZP =
∑

ν

∫

dy1ΦL
ν (y1)ΛN

ν ΦR
ν (y1)

=
∑

ν

ΛN
ν . (3.42)

In the thermodynamic limit, ZP is dominated by the largest eigenvalue Λ0 or,
equivalently, the lowest ε0:

lim
N→∞

1
N

ln ZP = lnΛ0 = −βε0 (3.43)

Other thermodynamic properties:
Order parameter:

< yi > =
1

ZP

∫

dy1 · · · dyNT (y1, y2) · · ·T (yi−1, yi)yi

T (yi, yi+1) · · ·T (yN , yN+1)

≡ 1
ZP

∑

ν

∫

dy1 · · · dyN+1ΦL
ν (y1) T (y1, y2) · · ·T (yi−1, yi)

︸ ︷︷ ︸

i−1

yi

T (yi, yi+1) · · ·T (yN , yN+1)
︸ ︷︷ ︸

N−i+1

ΦR
ν (yN+1) , (3.44)

after insertion of a complete set of states (cf. above); the braces denote the
number of times we can perform an integration and obtain, respectively, a right
eigenfunction with an argument smaller by one, or a left eigenfunction with an
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argument larger by one (as well as a factor Λν . The remaining integral must be
performed explicitly:

< yi > =
1

ZP

∑

ν

ΛN
ν Mνν

≈ M00 (3.45)

where the second line is exact in the thermodynamic limit, and we have used
the abbreviation

Mνµ =
∫ ∞

−∞
dyΦL

ν (y)yΦR
µ (y) . (3.46)

correlations (i < j):

< yiyj > ≡ 1
ZP

∫

dy1 · · · dyNT (y1, y2) · · ·T (yi−1, yi)yiT (yi, yi+1)

· · ·T (yj−1, yj)yjT (yj , yj+1) · · ·T (yN , yN+1)

=
1

ZP

∑

ν

∫

dyi · · · dyjΛi−1
ν ΦL

ν (yi)yiT (yi, yi+1)

· · ·T (yj−1, yj)yjΛN−j+1
ν ΦR

ν (yj) (3.47)

where the straightforward integrations, i.e the first i− 1 and the last N − j + 1
have already been performed (cf. above). In order to perform the remaining
integrations, we insert two more factors of 1, after yi and before yj , i.e. integrals
∫

δ(yi − ȳi) and
∫

δ(yj − ȳj), respectively; exploiting the presence of the δ
functions, we may substitute the variables yi and yj by ȳi and ȳj respectively.
This translates to two more sums over complete sets of states and another j− i
integrals which can now be performed:

< yiyj > =
1

ZP

∑

ν,µ,ρ

∫

dȳidȳjdyi · · · dyjΛi−1
ν ΦL

ν (ȳi)ȳiΦR
µ (ȳi)ΦL

µ(yi)

T (yi, yi+1) · · ·T (yj−1, yj)ΦR
ρ (yj)ΦL

ρ (ȳj)ȳjΛN−j+1
ν ΦR

ν (ȳj)

=
1

ZP

∑

ν,µ,ρ

ΛN+i−j
ν Λj−i

ρ

∫

dȳidȳjΦL
ν (ȳi)ȳiΦR

µ (ȳi)

δµ,ρΦL
ρ (ȳj)ȳjΦR

ν (ȳj)

=
1

ZP

∑

ν,µ

ΛN+i−j
ν Λj−i

µ |Mνµ|2 . (3.48)

In the thermodynamic limit the ν = 0 term dominates; the resulting factor
cancels against the denominator and leaves

< yiyi+r >=
∑

µ

|M0µ|2 e−β(εµ−ε0)r (3.49)

where we have used Dirac shorthand for the matrix element and set j = i + r.
The first term (µ = 0) in the above sum corresponds to < y >2 and should
properly be subtracted from both sides; This leaves

< δyiδyi+r > ≡ < yiyi+r > − < yi >< yi+r > (3.50)

=
∑

ν

′
|M0ν |2 e−β(εν−ε0)r
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where now the ground state is excluded from the summation. The above result
identifies the correlation length ξ, i.e the typical length over which the decay of
correlations takes place, as

ξ
l

=
1

β(ε1 − ε0)
(3.51)

where the subscript 1 stands for the first excited state (dominant exponential
in the limit of large r).
Gradient-expansion approximation to the spectrum of (3.36):
Suppose that the displacement field does not change appreciably over a lattice
constant This is certainly reasonable at low temperatures. Note that this does
not exclude large displacements per se. Nonlinearity is explicitly allowed, but
the displacement field must be smooth. The assumption is certainly reasonable
at low temperatures.

We set y = x + z, ΦR → φ and rewrite (3.36) as

e−β[εν−V (x)]φν(x) =
∫ +∞

−∞
dz e−

1
2 βµω2

0z2
{

φν(x) + zφ′ν(x) +
1
2
φ′′ν(x)

}

=
[

2π
βµω2

0

]1/2 {

φν(x) +
1

2βµω2
0
φ′′ν(x)

}

(3.52)

where higher terms in the gradient expansion have been neglected and the Gaus-
sian integrals have been performed. The factor in front of the r.h.s. can be
absorbed in the eigenvalue by defining ε̃ν = εν + [1/(2β)] ln[2π/(βµω2

0)]. Now
comes the hard part. For many practical purposes, the relevant size of ε−V (x)
is D, the depth of the Morse well (or some other characteristic energy in the
case of another potential). In our case one can reasonably argue that this is
the case for the lowest eigenstates; at large negative values of x (where this
does not hold, because V (x) is huge) we expect that the exact eigenfunction
Φ and its approximation φ are both negligible, so that the possible large error
in computing matrix elements is irrelevant. If then βD ≤ 1 it is reasonable to
expand the exponential and keep only the first term. Dividing both sides by β
we obtain a Schrödinger - like equation:

− 1
2µ(βω0)2

φ′′ν(x) + [V (x)− ε̃ν ]φν(x) = 0 (3.53)

Before we continue the discussion of (3.53) and its properties, we pick up the
bits and pieces (cf (3.32), (3.33), (3.43) ) of the thermodynamic free energy (per
site)

f = − 1
βN

ln(ZKZP )

= − 1
2β

ln
(

2πµ
β

)

+ ε0

= − 1
β

ln
(

2π
βω0

)

+ ε̃0 . (3.54)

The first term is the free energy of the small oscillations (transverse phonons in
this context). It is a term smooth in temperature (constant specific heat!) and
need not concern us any more. No phase transition can come out of it. Any
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nontrivial physics is hidden in ε̃0. It is therefore appropriate to drop the tilde
from now on and finally ask the question: what is so special about the ground
state of the Morse potential?

I will quote the solution of (3.53) from Landau and Lifshitz; but before I
do that, let me make a couple of comments. First, (3.53) would be a true (i.e.
quantum-mechanical) Schrödinger equation, if we substituted 1/(βω0) by h̄. I
will come back to that point. Second, I can get a dimensionless potential (and
eigenvalue) by dividing both sides of (3.53) by D. In other words, the relevant
dimensionless parameter is

δ2 =







2µ
a2h̄2 · D (quantum mechanics)

2µβ2ω2
0

a2 · D (statistical mechanics).
(3.55)

In terms of δ, the bound state spectrum of (3.53) is given by

εn

D
= 1−

[

1− n + 1/2
δ

]2

n = 0, 1, ..., int(δ − 1/2) . (3.56)

There is at least one bound state if δ > 1/2. For 1 ≥ δ > 1/2 there is exactly one
bound state. And if δ becomes equal to, or smaller than 1/2, there is no bound
state at all. The value δc = 1/2 is ”critical”. In quantum mechanical language,
if a particle has a mass which is lighter than a critical mass µc = h̄2a2/(8D), it
cannot be confined in the well. Quantum fluctuations will drive it out. (note:
this is a general property of 1-dimensional wells which are asymmetric; exercise
... for the half-infinite asymmetric well; symmetric wells will support a particle
in a bound state, no matter how low its mass).

In the context of statistical mechanics, δc corresponds, via (3.55), to a critical
temperature Tc = 2(ω0/a)

√
2µD. The free energy is given by

f
D

=











1 T > Tc

1−
(

1− T
Tc

)2
T < Tc ,

(3.57)

where in the upper line we have made use of the fact that the bottom of the
continuum part of the spectrum is at ε = D. The free energy f is non-analytic
at T = Tc, where its second derivative is discontinuous (i.e. there is a jump in
the specific heat). This corresponds to a second order transition, according to
the Ehrenfest classification scheme1.

In order to gain some further insight into the physics involved, it is useful
to examine the average displacement cf (3.45), determined by the ground-state
(GS) eigenfunction

φ0(x) = e−ζ/2 ζδ−1/2 (3.58)

where ζ = 2δe−ax. It is straightforward to see that, as T approaches Tc from
below, the eigenfunction extends towards larger and larger positive values of x:

φ0(x) ∝ e−λx (3.59)
1Note that the term ”second order” is meant literally in this case, not just as a metaphor for

the absence of a latent heat (for which the term ”continuous transition” would be appropriate).
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where
λ =

1
δ − δc

(3.60)

is a (transverse) characteristic length which measures the spatial extent of the
GS eigenfunction. As a consequence, we can estimate that < y >, which is
dominated by the large values of the argument, will also behave as

< y >∼ (δ − δc)−1 ∼
(

1− T
Tc

)−1

. (3.61)

[For comparison: the exact result, < y >= 1
a [ln(2δ)− ψ(2δ − 1)] obtained by

(3.58), has the asymptotic behavior claimed].
As the critical temperature is approached from below, particles cease to be
confined to the minimum of the Morse well. They perform larger and larger
excursions to the flatter part of the potential. At Tc the transition is complete;
the average transverse displacement is infinite. Particles move, on the average,
on the flat top of the Morse potential. Unwinding (”melting”) of the DNA has
occurred.

In the language of critical phenomena < y > is the order parameter. In the
”usual” phase transitions, one goes from an ordered to a disordered phase. The
order parameter m vanishes at the transition point, i.e m ∝ (Tc − T )β with a
positive critical exponent β (not to be confused with the inverse temperature:
standard notation of critical phenomena!). DNA melting is really an instability
(rather than an ”order-disorder” transition). It is therefore not surprising that
the corresponding critical exponent β extracted from (3.61) is negative (-1).

Experimental data on DNA denaturation do not deliver < y > directly.
The ”experimental order parameter” is the helical fraction, i.e the probability
that a given base pair is still bound; technically one uses an (instrumentation-
dependent) cutoff y0 and measures P (y > y0, T ). For the model presented here,
this function approaches zero smoothly (linearly) as T → Tc, independently of
the choice of y0.

Eq. (3.51) states that the correlation length is also contolled by the gap in
the eigenvalue spectrum; as the transition is approached,

ξ
l

=
1

βD

(

1− T
Tc

)−2

(3.62)

which identifies a critical exponent ν = 2 for the divergence of the correlation
length. The picture of thermal denaturation which emerges is one of ordered
regions of typical size ξ, where helical structure persists; these regions are in-
terrupted by ”denaturation bubbles”.

Comment: The mathematical analogy between the behavior of the spectral
gap which occurs in a point (d=0) system and the singularity in the free energy of
a classical chain (d=1) is an example of a deeper analogy which relates quantum
to thermal fluctuations; the formal correspondence h̄ ↔ 1/(βω0) hides a far-
reaching analogy between

d− dimensional QM ⇔ (d + 1)− dimensional classical stat. mech. (3.63)

The analogy is most fruitful at d = 1, because of the interplay and the richness
of exact available results which based either in the transfer-matrix approach
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Figure 3.3: The fraction of bound base pairs P (y < 2Å, T ) as a function of the
T/Tc for the type I (triangles) and II (diamonds). Inset: the entropy S(T )/NkB)
(symbols as in main fig.); the length of the double arrow represents the estimate
of the melting entropy obtained from the scaling Eq. (3.4). The solid lines are
”guides to the eye”.

of 2-dimensional classical statistics (Onsager, 2d Ising model) or on the Bethe-
Ansatz developed for 1-d quantum spin systems.

The theory presented is by no means complete; in particular it does not
seem to account (nor was it proposed for that purpose!) for the series of sharp
steps with which melting of physical, heterogeneous DNA occurs. Some of these
issues have already been addressed. In particular, in the next lecture I will give
a brief account of the mechanism via which a 1st order transition may occur.
However, the ”morale” of this approach is that it is indeed possible to construct
Hamiltonian models which exhibit true thermodynamic phase transitions 2.

3.4 Is DNA melting a 1st order transition?

Typical structure revealed in experiments involves a series of steps (multistep
melting). Heterogeneity by itself cannot explain that; a distribution of coupling
strengths {Di} of the various base pairs gives a smooth transition corresponding
to some average D̄.

2-chain model, as formulated, misses at least one important feature: the cou-
pling between neighboring base pairs does not seem to depend on the difference
coordinate alone. The reason can be seen simply in an extreme case: if either
one of the two neighbors belongs to a denaturation bubble, the restoring force

2There seems to be recent awareness (cf. Hansmann and Okamoto, J. Chem. Phys. 110,
1267 (1999) ) that the N → ∞ limit of the helix-coil transition in polypeptides represents a
true phase transition
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originating from it cannot be significant. Stiffness is therefore a function of the
pair. A simple way to account for this, proposed by Dauxois, Peyrard & Bishop
(Phys. Rev. E 47, R44 (1993)), has been to assume that the stiffness constant
depends on both displacements as

ω̃2
0(yn, yn+1) =

[

1 + e−α(yn+yn+1)
]

ω2
0 (3.64)

where α is a characteristic inverse length, typically much smaller than the a
of the Morse potential. The above expression ”interpolates” between values
of 2ω2

0 (when both n and n + 1 oscillate near the bottom of the well) and ω2
0

(when either n or n + 1 reaches the flat top). Note that large negative values of
the displacement (which might introduce excessive stiffness values) are rendered
improbable by the repulsive cores of the Morse potentials at both n and n + 1.

Introducing this modified stiffness parameter, we obtain, in the spirit of the
gradient expansion (3.52),

e−β[εν−V (x)]φν(x) =
[

2π
βµω2

0f(x)

]1/2 {

φν(x) + +
1

2βµω2
0f(x)

φ′′ν(x)
}

where f(x) = 1 + e−2αx. The resulting ”Schrödinger” equation

− 1
2µβ2ω2

0f(x)
φ′′ν(x) + U(x)φν(x) = ε̃νφν(x) (3.65)

differs in two aspects from (3.53). First, the ”mass” is x-dependent. Second,
the potential includes a new term, U(x) = V (x) + [1/(2β)] ln f(x). Fig shows
the two contributions to the potential in two typical cases. If 2α/a > 1, the
barrier introduced by f is too weak to control the behavior of U as x → ∞.
Alternatively if 2α/a > 1 , the barrier dominates the asymptotic behavior.
In the first case, the critical behavior is identical with the one described in
the previous section. In the second case it can be shown (either within the
WKB approximation to the spectrum of (3.65) or via a high-accuracy numerical
solution of the full TI problem) that the gap between the ground state and the
bottom of the continuum now approaches zero linearly :

ε1 − ε0 = AD
(

1− T
Tc

)

(3.66)

where A is a numerical factor of order unity. This implies a correlation length
which diverges with an exponent ν = 1 and a discontinuity in the first derivative
of the free energy, i.e. a melting entropy

∆s = − lim
T→T−c

∂f
∂T

=
AD
Tc

(3.67)

corresponding to a latent heat ∆Hmelting = AD. The transition is first order.
In order to explore the critical properties of the phase transition, it is con-

venient to introduce an additional term

H1(y) = Dah
∑

n

yn (3.68)
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Figure 3.4: The dependence of (ε1 − ε0)/D|t| on the scaling variable h/|t|3/2 is
shown for 4 different values of h and a range of temperatures; the dotted line
marks the slope 2/3.

in the transverse Hamiltonian. The conjugate field h has the property that it
”confines” particles to finite values of the displacement field; one can therefore
study the transition in the limit h → 0+.

Numerical results suggest (cf. Fig. (3.4)) that

ε1 − ε0 = D|t|Ψ
(

h
|t|3/2

)

(3.69)

where t = T/Tc − 1. Since this is (minus) the singular part of the free energy,
differentiation with respect to h gives the order parameter

< y >∝ |t|−1/2 (3.70)

i.e. the exponent β = −1/2. Note that there is no step in the order parameter,
which diverges continuously as approaches the critical point. There is however a
step discontinuity in the observed ”order parameter”, i.e. the fraction of bound
pairs (see Fig. (3.3)).

We have derived in this section a ”melting scenario” for a hypothetical,
homogeneous, DNA of infinite length. ”Real life” DNA is expected to present
this behavior only as an approximation. Multistep melting due to heterogeneity
has already been shown to occur (Cule & Hwa, PRL 79, 2375 (1997)) in the
context of this model. There is significant variety in the possibilities of critical
behavior of simple 1-d models.

3.5 Phase transitions in one-dimensional systems

Consider the following statements:

45



1. complete myth: there are no phase transitions in one dimensional systems.

2. half-truth (trickier!): There are no phase transitions in 1-d systems with
short-range interactions.

3. true statement (van Hove, 1950): No phase transitions occur in 1-d parti-
cle systems with short-range pair interactions.
Model just described has on-site potential - i.e. this statement is not ap-
plicable.

4. However, Landau has an even stronger statement!
Macroscopic phase coexistence [and therefore a phase transition] cannot
occur at finite temperatures in one dimensional systems.

Derivation: Consider a system with N sites, which may exist in either phase A
or phase B. Let θ be the fraction of phase A; furthermore, let there be m << N
contacts between the phases, each of energy ε. These can be steplike (Ising) or
continuous domain walls. The free energy of the configuration is given by

F = NθfA + N(1− θ)fB + FDW (3.71)

where
FDW = mε− kBTSDW (m,N) (3.72)

and the (dimensionless) entropy is given by

SDW (m, N) = ln[
N !

m!(N −m)!
] (3.73)

≈ m ln[
Ne
m

]

Minimization of the total free energy with respect to m yields

0 =
∂F
∂m

= ε + kBT ln(
m
N

) (3.74)

and a macroscopic average number (ie. a finite density) of domain walls

m̄ = Ne−ε/(kBT ) . (3.75)

The system breaks up into m regions of finite size eε/(kBT ). Macroscopic phase
separation can only occur at zero temperature (as the domain size goes to in-
finity).

Summary of Landau’s argument in words:
No phase transition can take place in 1-d, because the system splits into a macro-
scopic (of order N) number of domains of finite size, separated by domain walls.
The spontaneous split is favored by entropy, which more than makes up for the
energy needed to create the domain walls.

Landau’s argument covers a wide range of systems, e.g. double-well on-
site potentials (”Ising” universality class). Is there a way out? Yes, since the
argument is based on a finite domain wall energy. If that energy for some reason
diverges, the argument does not apply and phase separation can take place.

(cf. exercise 5, evaluate DW energy for φ4 and Morse on-site potentials)
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Chapter 4

Stochastic resonance
phenomena

4.1 General background: escape from a barrier

Kramers’ problem: Activate Barrier Crossing (ABC); Basis of all chemistry
(reaction rates) - microscopic derivation of Arrhenius law.
Physical modelling (Kramers): particle in metastable potential V (x) with a
minimum at x = 0 and a local maximum at x = a with a characteristic energy
difference ∆E = V (a)− V (0).
also present: thermal noise and a viscous medium.
Wanted: the escape rate τ(∆E); Arrhenius limit τ(∆E) ∝ e∆E/(kBT ). Equation
of motion

mv̇ + mγv = −V ′(x) + f(t) (Langevin) (4.1)

where the random force satisfies

< f(t) > = 0 (4.2)

< f(t)f(t′) > = Aδ(t− t′) (4.3)

(short time correlations, approximated by a δ function: ”white noise”). Note
that A is not arbitrary. Its value is fixed by the system parameters as follows:
Consider the ”stochastic” part of the velocity and displacements, respectively :

m∆v(t) =
∫ t

0
dt′e−γ(t−t′)f(t′) (4.4)

and

∆x(t) =
∫ t

0
dt′∆v(t′) . (4.5)

Eq. (4.4) is equivalent to (4.1) for the case of a vanishing deterministic force
F = −V ′(x). It is straightforward to show (exercise ...) that

< ∆v2(t) >=
A

2γm2

(

1− e−2γt) . (4.6)
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In the limit t → ∞ the demand of energy equipartition requires the r.h.s to
approach kBT/m. Therefore

A = 2γmkBT (fluctuation-dissipation). (4.7)

Furthermore, one can show that, in the limit γt >> 1,

∆x2(t) = 2Dt (4.8)

where
D =

A
2m2γ2 = µkBT (Einstein relation), (4.9)

and µ = (mγ)−1 is the mobility of the particle. Mobility in the (standard)
following sense: if we take the overdamped limit of Eq. (4.1), where the inertial
term vanishes, then, on the average,

mγ < v >= F (4.10)

i.e. vdrift = µF (mobility: proportionality constant relating drift velocity and
force when a particle moves under the influence of a constant force in a viscous
medium).

There are two alternative descriptions of random phenomena. One involves
stochastic differential equations (Langevin). The other is in terms of continuous
probability distributions. Outline the second:

Let P (x, t)dx be the probability to find a particle in the interval (x, x + dx)
at time t. The function P , being a probability density, obeys an equation of
continuity, i.e.

∂
∂t

P (x, t) +
∂
∂x

J(x, t) = 0 (4.11)

where the probability current has, in general, a drift and a diffusion term:

J(x, t) = P (x, t)vdrift −D
∂P
∂x

= −PµV ′(x)− µkBT
∂P
∂x

(4.12)

Inserting (4.12) in (4.11) and dividing both sides by µ, we obtain

1
µ

∂
∂t

P (x, t) =
∂
∂x

[V ′(x)P ] + kBT
∂2P
∂x2 (4.13)

It is usual to redefine the units of temperature and time by setting kB = 1
and µ = 1. Eq. (4.13) is known as the Smoluchowski equation. Note: the
”derivation” presented here is not a substitute for a good course in the theory
of random variables. But it can hopefully give you a feeling for some of the
physical concepts which lie behind the formalism.

The following formal way of rewriting (4.13) in terms of a linear operator
will prove useful:

∂P
∂t

= T
∂
∂x

e−V (x)/T ∂
∂x

eV (x)/T P ≡ LP (4.14)
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Defining P = e−V (x)/(2T )P̃ gives

e−V (x)/(2T ) ˙̃P = e−V (x)/(2T )



















T P̃ ′′ −
[

V ′(x)2

4T
− 1

2
V ′′(x)

]

︸ ︷︷ ︸

U(x)

P̃



















, (4.15)

or,
˙̃P = −HP̃ (4.16)

in terms of the pseudoSchrödinger operator

H = −T
∂2

∂x2 + U(x) . (4.17)

A separation of variables Ansatz

P̃ (x, t) =
∑

j

Aj φj(x) e−λjt (4.18)

leads to the eigenvalue equation

Hφj(x) = λjφj(x) . (4.19)

The problem is therefore reduced to finding the eigenfunctions and eigenvalues
of H, subject to the appropriate initial and boundary conditions.

If the particle is initially at x = 0

P (x, 0) = δ(x− x0)

= e−
V (x)−V (x0)

2T

∑

j

φ∗j (x0)φj(x) (4.20)

where the second line exploits the completeness of the eigenfunctions; the pref-
actor is unity if x = x0 and irrelevant otherwise. Comparing (4.20) to (4.18)
provides the constants Aj . The resulting formal solution of the initial value
problem is

P (x|x0, t) = e−
V (x)−V (x0)

2T

∑

j

φ∗j (x0)φj(x)e−λjt . (4.21)

Some general remarks on (4.21):
Eq. (4.13) has a special, time-independent, exact solution of the form

P∞ =
1
Z

e−V (x)/T (4.22)

where Z =
∫

dx exp[−V (x)/T ], from the normalization of probability. This
is not necessarily a stable equilibrium solution. It may be, depending on the
boundary conditions of the problem.

The eigenvalue equation (4.19) has the formal solution

φ0(x) =
1√
Z

e−V (x)/(2T ) (4.23)

associated with the eigenvalue λ = 0. Although this is always a formal solution,
i.e. independently of the form of the potential V (x), note that there may exist
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situations where it does not represent an admissible eigenfunction. This happens
when the normalization integral Z does not exist; the Kramers problem is one
such case!

The spectrum of (4.19) is nonnegative:

λj ≥ 0 all j (4.24)

Corollary: If Z exists, then

lim
t→∞

P (x|x0, t) = P∞ (4.25)

We now proceed to treat the Kramers problem:
For a non-steady-state situation, a probability leak at x = a (absorbing trap)
and a reflecting barrier at x = b, and an initial condition of the form (4.20) with
b < x0 < a (particle starting off within the barrier), the relevant quantity is

I(t) =
∫ a

b
dx P (x|x0, t) (4.26)

and expresses the probability that the particle is still confined within the barrier
at time t. Note the general properties

İ(t) < 0 (4.27)

I(0) = 1 (4.28)
I(∞) = 0 . (4.29)

Let f(t)δt be the probability that an escape takes place in the time interval
(t, t + δt). The relationship

I(t) = I(t + δt) + f(t)δt (4.30)

reflects the fact that, there are only two possible outcomes at t + δt and their
probabilities are additive. It follows that

f(t) = −İ(t) . (4.31)

The average first passage time is given as

τ1 ≡
∫ ∞

0
dt f(t) t (4.32)

= −
∫ ∞

0
dt İ(t) = −tI(t)|∞0 +

∫ ∞

0
dt I(t)

=
∫ ∞

0
dt

∫ a

b
dx P (x|x0, t) (4.33)

=
∫ b

a
dx e−

V (x)−V (x0)
2T

∑

j

φ∗j (x0)φj(x)
λj

︸ ︷︷ ︸

≡M(x,x0)

. (4.34)

A ”zeroth order” approximation suggests that if 0 < λ0 << λ1 < λ2 < · · ·, the
j = 0 term dominates the last sum (slow leak); introducing

φ0(x) ≈ 1√
Z

e−V (x)/(2T ) (4.35)
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as an approximate eigenfunction in (4.34), we obtain

τ1 ≈
1
λ0

(4.36)

as an order-of-magnitude estimate. of the average first passage time. We can
and will do better than that, but it is reassuring to know that if a characteristic
(slow) time scale exists, in the form of a well separated ground-state eigenvalue,
it will show up in the barrier escape phenomenon as well.

Exact evaluation of τ1: note first that the kernel M(x, x0) defined in
(4.34) satisfies

L(x)M(x, x0) = −δ(x− x0) (4.37)

(can be verified explicitly). A formal solution of (4.37) is

M(x, x0) =
1
T

e−V (x)/T
∫ a

x
dy eV (y)/T

∫ y

x0

dz δ(z − x0) . (4.38)

We then obtain from (4.34)

τ1 =
1
T

∫ a

b
dx e−V (x)/T

∫ a

x
dy eV (y)/T

∫ y

x0

dz δ(z − x0)

=
1
T

∫ a

b
dx e−V (x)/T

∫ a

x
dy eV (y)/T (4.39)

which is our general result for the mean first-passage time in terms of the po-
tential.

Application to a wedge-type potental with a trap at x = a,

V (x) =







Ex/a if 0 < x < a

∞ if x < 0
(4.40)

(analytically tractable, just to demonstrate how Arrhenius temperature depen-
dence comes about). From (4.39) we obtain

τ1 =
1
T

∫ a

0
dx e−Ex/(Ta)

∫ a

x
dy eEy)/(Ta)

=
a
E

{

eE/T − 1− aT
E

}

. (4.41)

In particular, we obtain the limiting cases

τ1 =







a2T
E2 eE/T if T << E (Arrhenius)

a2

2T if T >> E
(4.42)

4.2 Escape from fluctuating barriers

4.3 Fluctuation-driven ratchets

References: Asturian & Bier PRL 72, 1766 (1994); Bier, Contemp. Phys. 38,
381 (1997).
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Rudimentary model of a molecular motor:
(i) microtubule: essentially an array of dipoles, forming a saw-tooth like poten-
tial (asymmetric with respect to reflection).
(ii) motor protein (kinesin) moving along the microtubule.
As the electrically charged motor protein moves, it catalyses ATP hydrolysis.
Depending on the phase of the catalysis cycle, it may or may not be bound to
the ATP molecule. In the first case its electrical charge becomes neutralized, in
the second it persists. Accordingly it ignores or feels the electrostatic potential
of the microtubule, which can be viewed as a ”fluctuating ratchet”. In what
follows, the motor protein is approximated by a Brownian particle.

Model (Fig ).

V0(x) =







E0
ξ
al if 0 < ξ < al

E0
l−ξ
1−a if al < ξ < l

(4.43)

where l is the periodicity of the microtubule array, 1 > a > 1/2 its asymmetry,
E0 the maximum of the potential, and ξ = x mod l. The potential fluctuates
according to the pattern

V (x, t) =







V0(x) if t/(2τ) mod 1 < 1/2

0 if t/(2τ) mod 1 > 1/2
(4.44)

(dichotomous noise: the potential is turned on and off at time intervals of
duration τ).

It is now possible to solve the Smoluchowski equation (4.13), which describes
the motion of an overdamped particle in the above time-dependent potential.
However.if the barrier is high, i.e. E0 >> kBT , the salient physics of transport
is contained in the following argument:

Every time the barrier goes up, it confines the particle to one of the poten-
tial minima. The deterministic force acting on it, as it attempts to climb the
barrier, dominates and sents it back. The particle stays at the minimum for
time τ . When the barrier is turned off, the particle has a chance to diffuse.
During the time interval τ it can travel over a mean diffusion distance

√
2D0T .

(The subscript 0 denotes that this is the diffusion constant of the medium; the
presence of the fluctuating ratchet will modify the diffusional behavior of the
particle; this is what we are attempting to estimate!).

Suppose that the time τ is so short, that the typical diffusion distance is
much smaller than the lattice constant l. At first glance, nothing will happen.
The barrier will go up again and the particle will be trapped again. Let’s look
closer: is it cetrain that it will be trapped at the same site?.

This is where the asymmetry comes in. If a is substantially larger than 1/2,
the time may be too short for the particle to diffuse over a full lattice constant,
or over the long side of the saw-tooth. But it may be enough for it to diffuse
leftward, over the short-side [length (1 − a)l] of the saw-tooth (remember: the
barrier is off). In this case, when the barrier comes up again, the particle will
find itself on the top, slide downhill to the neighboring (left) site and get trapped
there. If the process can be statistically repeated, we have a steady current.

In formal language:
Staring with a particle at the position x = 0 at time t = 0, P (x, 0) = δ(x).
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Diffusion equation (NB: (4.13) without the potential term) over time τ gives a
probability evolution

P (x, τ) =
1

2
√

πD0τ
e−

x2
4D0τ . (4.45)

Probability that the particle moves a notch to the right

πR =
∫ ∞

al
dx P (x, τ)

=
1√
π

∫ ∞

al
2
√

D0τ

dy e−y2

=
1
2
erfc

(

al
2
√

D0τ

)

. (4.46)

Probability that the particle moves a notch to the left (similarly):

πL =
∫ (a−1)l

−∞
dx P (x, τ)

=
1
2
erfc

(

(1− a)l
2
√

D0τ

)

. (4.47)

Probability that the particle stays in same groove because it does not diffuse
far enough in either direction: 1− πL − πR

We can now write down a master equation, describing the particle’s motion
through the sites (labeled by integers). If Pm(t) be the probability that the
particle is at the m− th site at time t,

Pm(t + 2τ) = Pm(t){1− πL − πR}+ Pm+1(t)πL + Pm−1(t)πR (4.48)

the three terms on the r.h.s. of (4.48) express the probabilities of the three
possible outcomes as outlined above. Multiplying (4.48) by ml and summing
over all m, we obtain

x̄(t + 2τ) = x̄(t) + (πR − πL)l (4.49)

where
x̄(t) = l

∑

m

Pm(t)m (4.50)

is the mean displacement of the particle at time t. The resulting drift velocity
(particle flux) is

v̄ =
πR − πL

2τ
l . (4.51)

Similarly, multiplying both sides of (4.48) by l2m2 and summing over all m, we
obtain

x2(t + 2τ) = x2(t)− (πR − πL)2 l2 + (πR + πL) l2 (4.52)

where
x2(t) = l2

∑

m

Pm(t)m2 . (4.53)

Subtracting x̄2(t + 2τ) from both sides of (4.52), we obtain

x2(t + 2τ)− x̄2(t + 2τ) = x2(t)− x̄2(t) + (πR + πL) l2 − (πR − πL)2 l2 . (4.54)
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Identifying
x2(t)− x̄2(t) = 2 D t (4.55)

yields

D =
πR + πL − (πR − πL)2

2τ
l2 . (4.56)

Comment: formalism describes a general asymmetric random walk. Extreme
special cases are (i) πR = πL (symmetic, no drift, nonzero diffusion constant),
(ii) πR = 0, πL = 1 (full ”drift”, no diffusion; in fact, deterministic motion
except for ”waiting phase” when the potential is on and the particle remains
trapped).

In the spirit of our approximation (cf. above), assume that the probability
of ”left-drifting” is small but nonnegligible, whereas that of right-drifting is
negligible; accordingly, we use the asymptotic expansion

erfc(x) ∼ 1√
πx

e−x2
( x >> 1) , (4.57)

and obtain a flux

J(τ) = v̄ ≈ −πLl
2τ

≈ − 1
2(1− a)

√

D0

πτ
e−

(1−a)2l2

4D0τ . (4.58)

As a function of τ , the flux has a maximum at

τR =
(1− a)2l2

2D0
. (4.59)

This is exactly the time it takes for the particle to diffuse over a mean charac-
teristic distance (1 − a)l, i.e. to diffuse ”over the top of the (absent) barrier”.
Tuning the flipping rate 1/τ (which is in reality a non-white noisy process) to
the diffusion rate of Brownian motion is known as stochastic resonance. The
flux (4.58) is shown in Fig. (4.1). At its maximum, the flux has the value

JR = −(2πe)−1/2 l
2τR

(4.60)

i.e., the particle moves at the rate of a constant fraction of sites per flip of the
barrier. This can be viewed as a measure of the efficiency of the stochastic
resonance mechanism.

Note that in this discussion we have made no mention of the energy source
of the whole process, which is of course the hydrolysis of ATP. The emphasis
was on describing the statistical mechanics of a simple case of the stochastic
resonance phenomenon.
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Figure 4.1: The dependence of the flux on the flipping rate; note the logarithmic
scale.
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