Drug Discovery
  Molecular Analysis
  Organic and Organometallic Chemistry
  Medicinal Chemistry
  Synthetic and Medicinal Chemistry
  Synthetic Medicinal Chemistry and Chemical Biology
  Identification & validation of novel therapeutic targets - Biological evaluation of bioactive small molecules and drugs
  Structural Biology & Chemistry
  Molecular Endocrinology
  Signal Mediated Gene Expression
  Molecular & Cellular Ageing
  Biomedical Applications
  Holistic Approaches in Health
  Environment and Health
  Metabolic Engineering-Bioinformatics
  Biomarker Discovery & Translational Research
  Bioinformatics focusing on the development of new methodologies and tools
  Enzyme and Synthetic Biotechnology
  Biomimetics & Nanobiotechnology
  Conjugated Polymers for Healthcare, Bioelectronics and Bioimaging


Metabolic Engineering - Bioinformatics
Dr. Olga Papadodima | Research Scientist, Group Leader


Research Directions

Our group works on translational research in Life Sciences, by exploiting experimental and computational approaches, aiming at the deeper understanding of molecular mechanisms implicated in several pathologies. During the last years, our research focuses mainly on the field of cancer genomics, with the goal to identify alterations and regulatory networks governing the pathophysiology of cancer and identify candidate new biomarkers and therapeutic targets.

The main directions of our research are:

a) mapping the mutational and transcriptional profile of different tumors


b) profiling the transcriptome of cancer cells in response to treatment with selected bioactive molecules


c) developing bioinformatics tools for the analysis of in-house generated genomic data and for the exploration of molecular and clinical data from well-known cancer-associated repositories



Research Objectives

The main objective of our research is the identification of driver genes, mutations or cellular networks that could represent candidate biomarkers or therapeutic targets. To this end, we focus mainly on the analysis of genomic and transcriptomic data (Next Generation Sequencing methodologies, microarrays) and taking advantage of sophisticated bioinformatics tools, high-dimensional statistics, information theory and machine learning we attempt to holistically describe complex biological processes, like cancer manifestation and progression. In this context, we are interested in the derivation of informative gene signatures that could reflect the underlying disease–related mechanisms and could act as a pool of putative biomarkers for characterization of disease state, prediction of drug susceptibility and ultimately enable patient stratification. In the concept of precision oncology, we collaborate with clinical doctors in an effort to exploit genomics to group patients into molecular disease sub-types that could benefit from tailored therapeutic approaches. In parallel, in collaboration with other groups of ICB, we are studying the cellular response upon treatment with selected bioactive molecules, aiming to elucidate the triggered molecular mechanisms and reveal new therapeutic targets or possible combinatorial therapeutic interventions.



Group Structure and Personnel

Olga Papadodima, PhD, Research Scientist
Aristotelis Chatziioannou, PhD, Collaborating Researcher
Konstantinos Voutetakis, MSc, PhD, Technical Scientific Personnel

Postdoctoral Researchers
Georgia Kontogianni, MSc, PhD,
Efstathios Vlachavas, PhD, ACCC fellow, Visiting Researcher

PhD students
Elena Gotsi, MSc



  • TRANSITION: “TRANSlating the complexIty of melanoma diagnosis into raTional therapeutic stratificatiON” (MIS 5031295) which is implemented under the Action “Research-Create-Innovate”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund), 136398.36 €, 24/7/2018-24/4/2021
  • STHENOS β (KRIPIS ΙΙ): ‘Targeted therapeutic approaches against degenerative diseases with special focus on cancer and ageing-optimisation of the targeted bioactive molecules’, MIS: 5002398. Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020), 22000 €, 01/11/2017-30/06/2021
  • ELIXIR-GR: “The Hellenic infrastructure for biological data management and analysis” (MIS: 5002780) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund), 6175 €, 18/12/2017-31/12/2021
  • HPMNC: Hellenic Precision Medicine Network on Cancer, Greek state-SIEMENS agreement, total NHRF budget 250000 €,  22/8/2018-31/12/2021



Recent publications

  • Koumaki, K., Kontogianni, G., Kosmidou, V., Pahitsa, F., Kritsi, E., Zervou, M., Chatziioannou, A., Souliotis, V.L., Papadodima, O., Pintzas, A. (2021). BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1867 (4), art. no. 166061
  • Maglogiannis, I., Kontogianni, G., Papadodima, O., Karanikas, H., Billiris, A., Chatziioannou, A. (2021). An Integrated Platform for Skin Cancer Heterogenous and Multilayered Data Management. Journal of Medical Systems, 45 (1), art. no. 10
  • Maurel, M., Obacz, J., Avril, T., Ding, Y.-P., Papadodima, O., Treton, X., Daniel, F., Pilalis, E., Hörberg, J., Hou, W., Beauchamp, M.-C., Tourneur-Marsille, J., Cazals-Hatem, D., Sommerova, L., Samali, A., Tavernier, J., Hrstka, R., Dupont, A., Fessart, D., Delom, F., Fernandez-Zapico, M.E., Jansen, G., Eriksson, L.A., Thomas, D.Y., Jerome-Majewska, L., Hupp, T., Chatziioannou, A., Chevet, E., Ogier-Denis, E., (2019). Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation EMBO Molecular Medicine (2019) 11:e10120
  • Vlachavas, E.I., Pilalis, E., Papadodima, O., Koczan, D., Willis, S., Klippel, S., Cheng, C., Pan, L., Sachpekidis, C., Pintzas, A., Gregoriou, V., Dimitrakopoulou-Strauss, A., Chatziioannou, A., (2019). Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape. Computational and Structural Biotechnology Journal, 17, pp. 177-185.
  • Papadodima, O., Kontogianni, G., Piroti, G., Maglogiannis, I., Chatziioannou, A., (2019). Genomics of cutaneous melanoma: focus on next-generation sequencing approaches and bioinformatics. J Transl Genet Genom 2019; 3:7.
  • Kontogianni, G., Piroti, G., Maglogiannis, I., Chatziioannou, A., Papadodima, O., (2018) Dissecting the mutational landscape of cutaneous melanoma: An omic analysis based on patients from Greece. Cancers, 10 (4), art. no. 96.
  • Lhomond, S., Avril, T., Dejeans, N., Voutetakis, K., Doultsinos, D., McMahon, M., Pineau, R., Obacz, J., Papadodima, O., Jouan, F., Bourien, H., Logotheti, M., Jégou, G., Pallares-Lupon, N., Schmit, K., Le Reste, P.-J., Etcheverry, A., Mosser, J., Barroso, K., Vauléon, E., Maurel, M., Samali, A., Patterson, J.B., Pluquet, O., Hetz, C., Quillien, V., Chatziioannou, A., Chevet, E., (2018). Dual IRE1 RNase functions dictate glioblastoma development. EMBO Molecular Medicine, 10 (3), art. no. e7929, 95
  • Rubio-Patino, C., J. P. Bossowski, G. M. De Donatis, L. Mondragon, E. Villa, L. E. Aira, J. Chiche, R. Mhaidly, C. Lebeaupin, S. Marchetti, K. Voutetakis, A. Chatziioannou, F. A. Castelli, P. Lamourette, E. Chu-Van, F. Fenaille, T. Avril, T. Passeron, J. B. Patterson, E. Verhoeyen, B. Bailly-Maitre, E. Chevet and J. E. Ricci (2018). Low-Protein Diet Induces IRE1alpha-Dependent Anticancer Immunosurveillance. Cell Metab 27(4): 828-842 e827.
  • Le Reste PJ, Pineau R, Voutetakis K, Samal J, Jégou G, Lhomond S, Gorman AM, Samali A, Patterson JB, Zeng Q, Pandit A, Aubry M, Soriano N, Etcheverry A, Chatziioannou A, Mosser J, Avril T, Chevet E. Local intracerebral inhibition of IRE1 by MKC8866 sensitizes glioblastoma to irradiation/chemotherapy in vivo. Cancer Lett. 2020 Dec 1;494:73-83. Epub 2020 Sep 1. PMID: 32882336.
  • Yeles C., Vlachavas E.-I., Papadodima O., Pilalis E., Vorgias C.E., Georgakilas A.G., Chatziioannou A. Integrative bioinformatic analysis of transcriptomic data identifies conserved molecular pathways underlying ionizing radiation-induced bystander effects (RIBE). Cancers, 2017, 9 (12), art. no. 160







© National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., 11635 Athens, Greece, Tel. +302107273700, Fax. +302107246618